

#### **CARBON FOOTPRINT OF APPLE AND PEAR: ORCHARDS, STORAGE AND DISTRIBUTION**

Figueiredo, F.<sup>1</sup> Castanheira, É.G.<sup>1</sup> Feliciano, M.<sup>2</sup> Rodrigues, M. Â.<sup>2</sup> Peres, P.<sup>2</sup> Maia, F.<sup>2</sup> Ramos, A.<sup>3</sup> Carneiro, J. <sup>3</sup>, Vlad, C.<sup>1</sup> and Freire, F.<sup>1</sup>

<sup>1</sup>University of Coimbra Portugal <sup>2</sup>Polytechnic Institute of Bragança <sup>3</sup>Agrarian School of Castelo Branco

#### **ENERGY for SUSTAINABILITY 2013**

SUSTAINABLE CITIES: DESIGNING FOR PEOPLE AND THE PLANET

SEPTEMBER 8–10, COIMBRA – PORTUGAL

# Summary

#### **1. Introduction**

- Background and Motivation
- Main goal

#### 2. Life-Cycle Model and Inventory

- Life Cycle model
- Inventory

#### 3. Results

- Carbon footprint Agricultural phase
- Carbon footprint Storage and Distribution

#### 4. Conclusions

### **Background and Motivation**



# Main goal

- The main objective of this paper is to present a life-cycle (LC) greenhouse gas (GHG) assessment of 3 apple and 1 pear production systems in northern and central Portugal.
  - Make a comparative inventory analysis for the two types of fruit;
  - Identify the LC phase of fruit production with higher environmental performance;
  - Identify the processes with more contributors to the GHG emissions.

Aiming at improving the environmental performance of fruit production systems in Portugal

# Life Cycle model

Four different LC inventories for orchards were implemented



- Two ("A") in central Portugal.
  - Orchard A produced apples ("Aa": 22 ha) and pears ("Ap": 7.4 ha);
- Two ("B" and "C") in northern Portugal.
  - Orchards B (13 ha) and C (11 ha) produced apples.

Two different LC inventories for cold storage were implemented in the same regions (S1 and S2).

### Life Cycle model



6

### Inventory

|                               |       | Orchards |       |       |        |        |        |
|-------------------------------|-------|----------|-------|-------|--------|--------|--------|
|                               | Apple |          |       |       | Pear   |        |        |
| Orchard                       | Aa    |          | В     |       | С      | Ар     |        |
| Inputs/ha                     | 2010  | 2011     | 2010  | 2011  | 2011   | 2010   | 2011   |
| Fertilizers                   |       |          |       |       |        |        |        |
| N (kg)                        | 51.8  | 56.9     | 72.5  | 38.9  | 27.0   | 46.4   | 50.9   |
| N organic (kg)                | 2.3   | 17.7     | 13.0  | -     | 3.0    | 2.0    | 15.8   |
| P (kg)                        | 195.5 | 66.2     | 170.1 | 48.6  | 75.0   | 175.0  | 59.3   |
| K (kg)                        | 42.5  | 80.5     | 237.9 | 83.9  | 152.5  | 38.0   | 72.0   |
| CaO (kg)                      | 230.0 | 27.1     | 121.8 | 14.4  | 325.0  | 205.9  | 24.3   |
| MgO (kg)                      | -     | -        | 92.6  | -     | 102.0  |        |        |
| Ca (kg)                       | 139.9 | 82.2     | -     | -     | -      | 125.2  | 73.6   |
| B (kg)                        | 0.8   | 1.2      |       |       | 0.9    | 0.7    | 1.1    |
| Pesticides                    |       |          |       |       |        |        |        |
| Fungicides (kg)               | 22    | 31.7     | 3.5   | 4.5   | 5.6    | 19.7   | 28.4   |
| Insecticides (kg)             | 8.6   | 20.8     | 25    | 7.8   | 21     | 7.7    | 18.6   |
| Herbicides (kg)               | 6.7   | 1.76     | 4     | 2.4   | 1.8    | 6.0    | 1.6    |
| Growth                        | 3.7   | 2.77     | -     | 0.1   | -      | 3.3    | 2.5    |
| Pesticides<br>unspecified (g) | 0.16  | 220      | -     | -     | 100    | 0.1    | 190    |
| Irrigation                    |       |          |       |       |        |        |        |
| Water (m <sup>3</sup> )       | 2000  | 2000     | 2160  | 2160  | 4500   | 2000   | 2000   |
| Energy                        |       |          |       |       |        |        |        |
| Electricity<br>(kWh)          | 2778  | 2574.9   | 692.3 | 692.3 | 2600.0 | 2487.1 | 3608.3 |
| Diesel (L)                    | 516.6 | 687.5    | 143.6 | 142.8 | 318.2  | 462.5  | 615.5  |
| Yield/                        |       |          |       |       |        |        |        |
| Production                    |       |          |       |       |        |        |        |
| Apple (t)                     | 50    | 50       | 30    | 28    | 50     | -      | -      |
| Pear (t)                      | -     | -        | -     | -     | -      | 35     | 45     |

Fruit picking was done manually with a couple of local workers

The energy required for this commute during the short collecting season was negligible and thus ignored.

#### Storage

| ~           |            |      |      |      |  |  |
|-------------|------------|------|------|------|--|--|
| Storage     | <u>S_1</u> |      | S_2  |      |  |  |
| Inputs      | 2010       | 2011 | 2010 | 2011 |  |  |
| Electricity |            |      |      |      |  |  |
| (kWh)       | 0.11       | 0.10 | 0.21 | 0.10 |  |  |
| Propane     |            |      |      |      |  |  |
| (g)         | -          | -    | 0.07 | 0.04 |  |  |
| Glycol      |            |      |      |      |  |  |
| (ml)        | -          | -    | 0.02 | 0.01 |  |  |
| Boxboard    |            |      |      |      |  |  |
| (kg)        | 0.05       | 0.05 | -    | -    |  |  |
| Water (L)   |            |      | 0.07 | 0.04 |  |  |
|             |            |      |      |      |  |  |

# Carbon footprint – Agricultural phase



The lowest farming emissions were calculated for apples produced by orchard B in 2011 followed by:

- C (+13%) and A (+ 35% in 2010 and + 43% in 2011).
- Cultivation of pears (Ap) induced slightly higher emissions than apple cultivation

Essentially due to

- Lower productivity per hectare (as compared to Aa and C); or
- Higher energy consumption (as compared to B).

# Carbon footprint – Agricultural phase



- The contributors to the cultivation phase were:
  - Diesel consumption for agricultural operations (16% to 40%);
  - Electricity used for irrigation (15% to 45%);
  - Production of fertilizers (7% to 36%);
  - Fertilization field emissions (7% to 18%);
- Production of pesticides represent less than 17% in all orchards.

### Carbon footprint – Storage & distribution



- The 2011 storage emissions were very similar for the two companies;
- Significant reduction in S\_2 storage emissions from 2010 to 2011 due to the major changes in the ventilation system;
- The long-term storage of apples and pears is responsible for significant emissions due to high electricity requirements;
- The GHG emissions in distribution were about 2-4 times higher for S\_2 compared with S\_1.

## Conclusions

- The GHG emissions (direct and indirect) of the cultivation phase, which ranges from 63 and 129 of total emissions;
- S\_1 storage accounting for 30% to 38% and S\_2 storage 31% to 33% of the total LC emissions;
- Distribution from the storage S\_1 represents less than 9% of the total LC emissions, while distribution from S\_2 accounts for around 30%.
- The cumulated GHG emissions of production, storage, and distribution for apple and pear varied between 192 and 229 g CO<sub>2</sub>eq kg<sub>fruit</sub>-<sup>1</sup>;

 Our results are consistent with previous LCA studies for fruit orchards in other countries (previous LCA studies: 82-364 g CO<sub>2</sub> kg<sub>fruit</sub>-1).



Thank you!

### **Questions** and **Comments**

**Center for Industrial Ecology** http://www2.dem.uc.pt/CenterIndustrialEcology Faculty of Sciences and Technology University of Coimbra.





This research was supported by project ECODEEP (Eco-efficiency and Eco-management in the Agro Industrial sector, FCOMP-05–0128–FEDER–018643) and the Portuguese Science and Technology Foundation projects: MIT/SET/0014/2009, PTDC/SEN-TRA/117251/2010.