ENERGY for SUSTAINABILITY 2015

Sustainable cities: Designing for People and the Planet

May 14-15, Coimbra - Portugal

LIFE-CYCLE GREENHOUSE GAS ASSESSMENT OF PORTUGUESE CHESTNUT

D. Rosa¹, F. Figueiredo¹, É. Castanheira¹, M. Feliciano², F. Maia², J. Santos², A. P. Silva³, H. Trindade³, and Fausto Freire¹

1: ADAI-LAETA, Center for Industrial Ecology, Department of Mechanical Engineering, University of Coimbra (UC).

<u>http://www2.dem.uc.pt/CenterIndustrialEcology/</u>

2: Mountain Research Centre (CIMO), Polytechnic Institute of Bragança (ESA)

3: Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD)

OUTLINE

1. Introduction

- i. Motivation
- ii. Aim

2. Methods

- i. Life-cycle model
- ii. Life-cycle inventory

3. Results

- i. Cultivation
- ii. Processing
- 4. Conclusions

1. INTRODUCTION

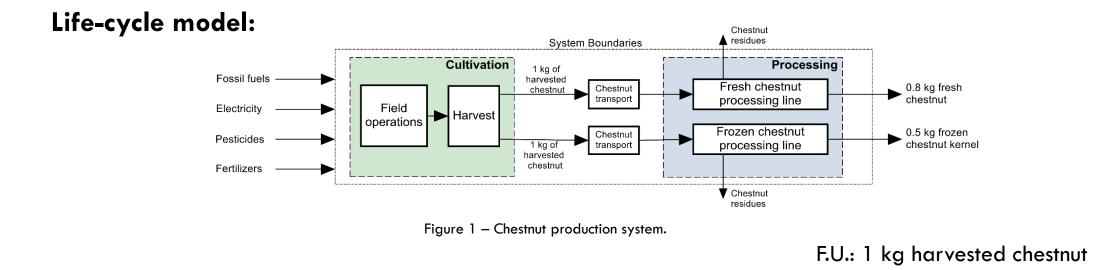
Motivation:

• Portugal was the third largest producer of chestnut in Europe (EU 28) and the seventh worldwide in 2013:

- annual production of 24.7 thousand tons;
- orchard area of 35 thousand hectares.

•The north of the country is the main production region (84% of production and 88% of the orchard area).

• It's one of the few fruits with a positive trade balance, having contributed to about 41 million \in in 2013. (INE, 2014; FAO, 2015)


Life Cycle Assessment (LCA) quantifies the potential life-cycle environmental impacts and identifies opportunities for improvement, however:

There are no LCA articles regarding chestnuts.

Aim:

 \rightarrow To assess the GHG intensity of Portuguese chestnut.

2. METHODS

Three cultivation systems in northern Portugal.

Processing factory: fresh and frozen chestnut production lines.

2. METHODS

Life-cycle inventory: cultivation

Table 1 – Main characteristics of the studied producers.

Producer	P1	P2			P3	
	2011	2010	2011	2012	2010	2011
Area (ha)	92	7		10		
Production (ton)	81	9	6	8	2	4
Productivity (kg/ha)	881	1214	786	1143	228	396

Table 2 – Main inputs of chestnut cultivation, per hectare.

Producer	P1	P2	P3	
Fertilizers (kg):				
N	9.0	15.0	19.8	
N organic	9.8	-	0.03	
Р	38.6	31.7	29.7	
P organic	3.0	-	0.03	
к	18.0	30.0	29.7	
K organic	7.6	-	0.03	
CaCO3	348.6	-	520.0	
Pesticides ¹⁾ (kg):				
Copper oxychloride	12.5	-	4.9	
Fosetyl-aluminium	-	-	7.4	
Energy (L)				
Diesel	101.1*	42.9	71.3	
Petrol	1.6	-	-	
Transport (km)	*Included in total	20.0	2.0	
Transport (km):	diesel	(lorry)	(tractor and trailer)	

•Main agricultural processes:

- soil management,
- fertilization,
- pruning,
- pesticide treatments and
- harvesting.

•Chestnut tree in full production (except for 80% of P3 orchard area).

•Emissions accounted for:

- fertilization (direct and indirect $\rm N_2O$ emissions and $\rm CO_2$ from liming),
- agricultural inputs production,
- combustion of petrol and diesel in agricultural operations,
- chestnut transportation to the factory.

1) The amount of pesticides is shown as a function of its active ingredient.

2. METHODS

Life-cycle inventory: processing


Table 3 – Main inputs of chestnut processing.

Inputs	Produ	Unit / kg _{harvested}	
	Fresh chestnut	Frozen chestnut	chestnut
– Electricity	0.05	0.49	kWh
– Propane	19.02	25.83	g

used mostly for cold production.

- used in kilns and steam generators.
- •Emissions accounted for:
- production and combustion of propane
- generation of electricity

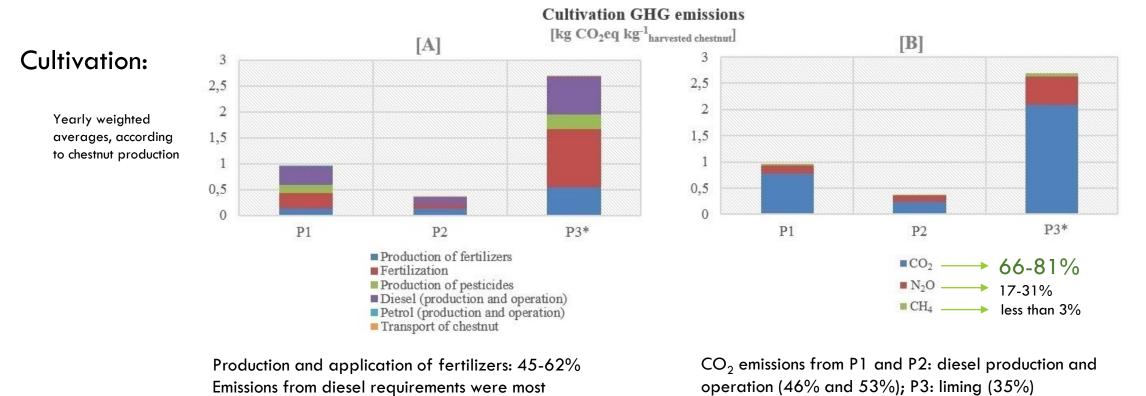
Figure 2 – Chestnut processing system.

Losses from chestnut processing:

frozen chestnut

.

fresh chestnut


۲

- chestnut selection
 - peeling
- water loss

- chestnut selection
 - 6

3. RESULTS

Figure 3 - [A] GHG emissions from chestnut cultivation. [B] Contribution of GHG type to cultivation emissions. * Only 20% of P3 area was in full production.

<u>GHG emissions from cultivation</u> ranged between 0.36 (P2) and 2.69 kg CO_2 eq kg⁻¹ harvested chestnut (P3).

relevant for P1: 39%

3. RESULTS

Processing:

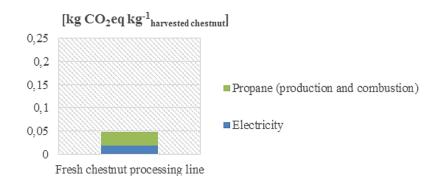


Figure 4 – GHG emissions of **fresh** chestnut processing.

Fresh chestnut processing: \rightarrow 0.05 kg CO₂eq kg⁻¹harvested chestnut Propane production and combustion (61%).

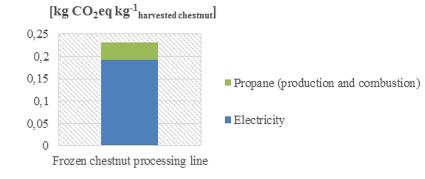


Figure 5 – GHG emissions of **frozen** chestnut processing.

Frozen chestnut processing: \rightarrow 0.23 kg CO₂eq kg⁻¹harvested chestnut Electricity generation (83%).

4. CONCLUSIONS

•GHG emissions from cultivation

• \rightarrow fertilizer production and application (45-62%).

• Processing GHG emissions

• \rightarrow fresh line: propane (61%); frozen line: electricity (83%).

• The overall GHG intensity ranged between 0.41-2.74 (fresh) and 0.60-2.92 (frozen) kg CO₂eq kg⁻¹_{harvested chestnut}, cultivation representing 60-98% of impacts.

•The results of this study demonstrate the importance of resource management practices at the cultivation stage, namely an efficient use of fertilizers and fossil fuels.

ONGOING/FUTURE WORK

A cradle to plate analysis comparing fresh and frozen chestnut, including:

- Cultivation
- Processing and packaging
- Distribution
 - national and exports
 - comparison of various means of transport
 - inclusion of refrigeration requirements
- Retail operations
- Household
 - storage
 - preparation
 - consumption

Assessment of other impact categories, in addition to climate change:

- Terrestrial acidification, freshwater eutrophication, and marine eutrophication
- and
- Total primary energy consumption

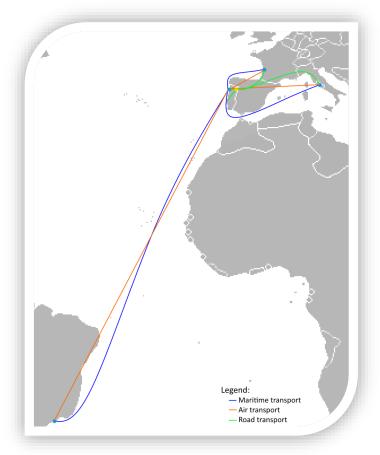


Figure 6 - Graphical representation of distribution scenarios analysed.

ENERGY for SUSTAINABILITY 2015

Sustainable cities: Designing for People and the Planet

May 14-15, Coimbra - Portugal

LIFE-CYCLE GREENHOUSE GAS ASSESSMENT OF PORTUGUESE CHESTNUT

D. Rosa¹, F. Figueiredo¹, É. Castanheira¹, M. Feliciano², F. Maia², J. Santos², A. P. Silva³, H. Trindade³, and Fausto Freire¹

1: <u>diana.rosa@dem.uc.pt</u>; <u>filipa.figueiredo@dem.uc.pt</u>; <u>erica@dem.uc.pt</u>; <u>fausto.freire@dem.uc.pt</u>

2: <u>msabenca@ipb.pt</u>; <u>filipemaia@hotmail.com</u>; <u>josesantos@ipb.pt</u>

3: <u>htrindad@utad.pt</u>; <u>asilva@utad.pt</u>

