

ENERGY for SUSTAINABILITY 2013

SUSTAINABLE CITIES: DESIGNING FOR PEOPLE AND THE PLANET

SEPTEMBER 8-10, COIMBRA - PORTUGAL

LIFE-CYCLE ASSESSMENT OF SUNFLOWER ADDRESSING LAND USE CHANGE

Filipa Figueiredo, Érica Castanheira e Fausto Freire

ADAI-LAETA, Center for Industrial Ecology http://www2.dem.uc.pt/CenterIndustrialEcology

> University of Coimbra Portugal

UNIVERSITY of COIMBRA

Summary

1. Introduction

- Background and Motivation
- Main goal

2. Life-Cycle Model and Inventory

- Life Cycle model
- LUC scenarios and Carbon calculations

3. Results

- LUC scenarios analysis
- LCIA results

4. Conclusions

Background and Motivation

Recent life-cycle assessment (LCA) studies of sunflower oil and biodiesel production have shown

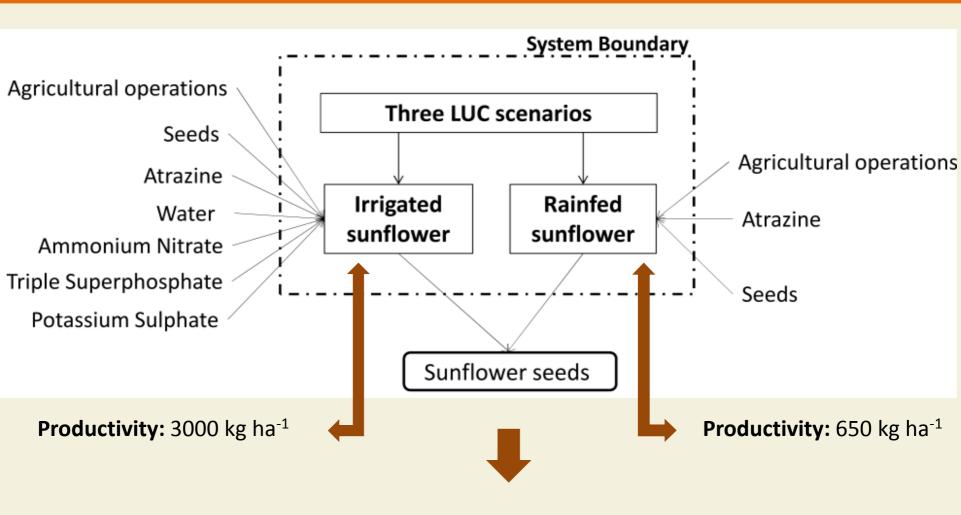
Agricultural phase

has an important contribution to the total environmental impacts

Portugal produces sunflower oil for food consumption and biodiesel production

This motivates a comprehensive assessment of the cultivation of sunflower in Portugal.

Main goal


The main objective of this paper is to present a LCA of sunflower seeds produced in Portugal

Comparing two agriculture practices (irrigated and rainfed)

Addressing the carbon-stock changes caused by alternative land-use change (LUC) scenarios

Identify the major contributors to the environmental impacts of sunflower cultivation

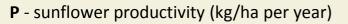
Life Cycle model

Functional Unit: 1 kg sunflower seeds

Land Use Change Scenario and Carbon calculations

Reference land use	Actual land use	e ₁ (kgCO ₂ eq kg _{cootc} -1)
Grassland (SD-mi)		-0.04
Perenial (NT-hi (w/))	Irrigated sunflower	4.3
Perenial (NT-hi (w/o))		3.4
Grassland (SD-mi)		0.2
Perenial (NT-hi (w/))	Rainfed sunflower	20.2
Perenial (NT-hi (w/o))	-	16.3

The emissions from carbon-stock changes caused by LUC (e_I, kg CO_{2eq}/kg_{oil}) were calculated using IPCC Tier 1 and adapting the following equation from the Renewable Energy Directive

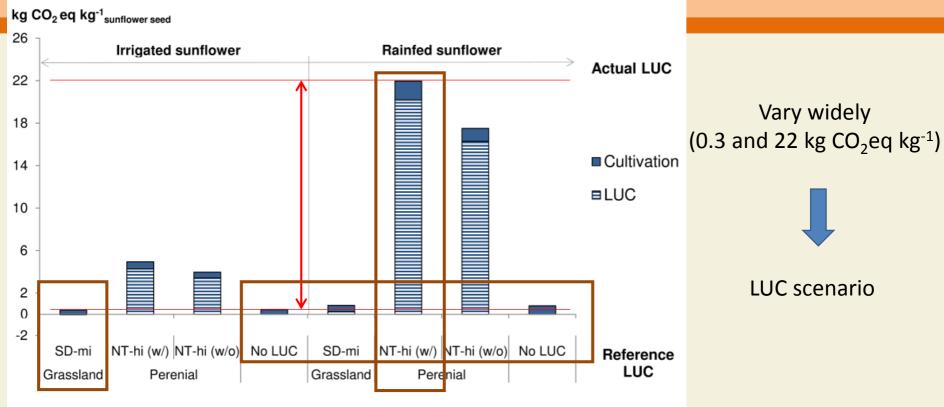

$$e_l \neq (CS_R - CS_A) \times 44/12 \times 1/20 \times 1/P$$

 $CS_{i} = SOC_{i} + C_{veg} = (SOC_{ST} \times F_{LU} \times F_{MG} \times F_{I}) + C_{veg}$

 e_1 – annualized GHG emissions from carbon stock change due to LUC (kg CO₂eq/kg)

 CS_R - carbon stock associated with the each reference LU (grassland or perennial) (kg CO_{2eq} /ha)

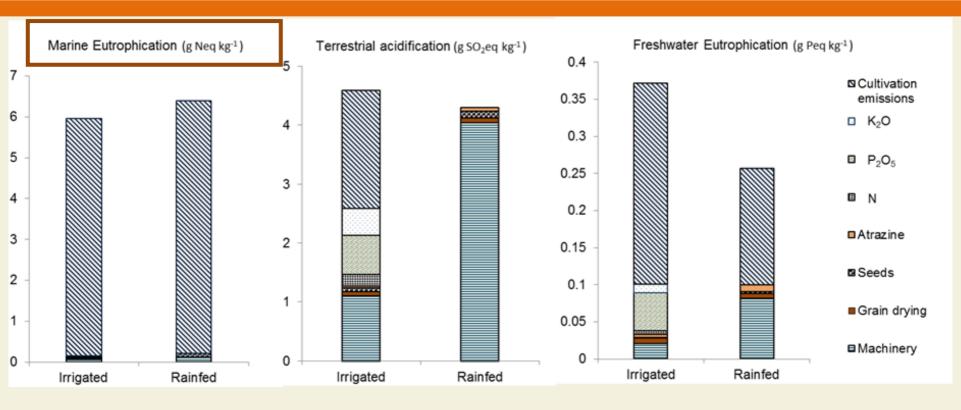
 CS_A - carbon stock associated with the actual LU (sunflower cultivation) (kg CO_{2eo} /ha)



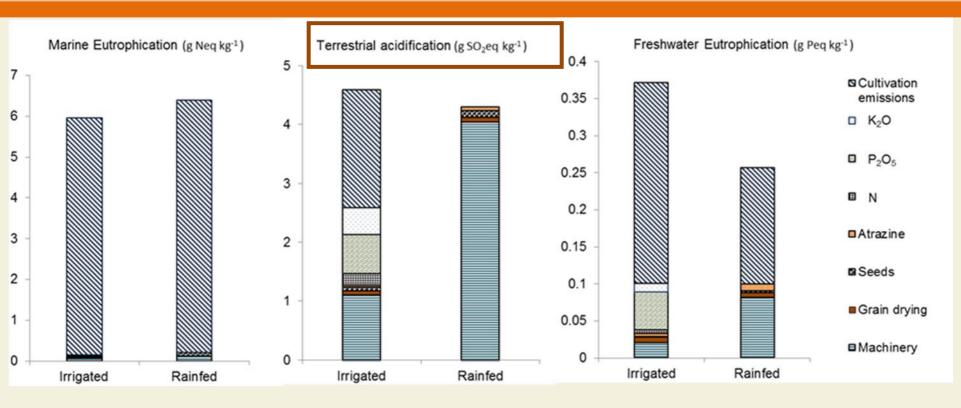
SOC_{sT} - standard value of soil organic carbon

 F_{LU} , F_{MG} , F_{I} - factors reflecting the difference in SOC associated with <u>type of land use</u>, <u>management</u> <u>practice</u> and <u>different levels of carbon input to soil</u> compared to the SOC_{ST}

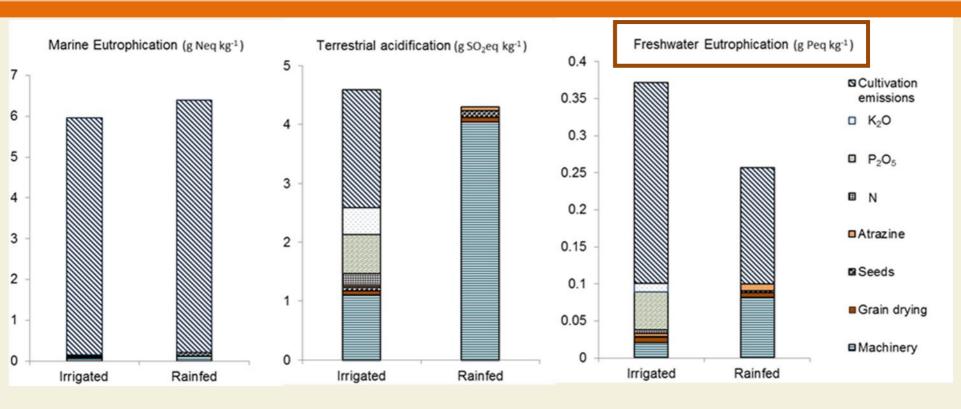
 $\mathbf{C}_{\mathbf{veg}}$ - above and below ground vegetation carbon stock in living biomass and in dead organic matter


LUC scenario analysis

SD:Severely degraded; NT: No tillage; mi:medium input; hi:highinput; w/:with manure; w/o:without manure;


- Lowest emissions severely degraded grassland into irrigated sunflower.
- Comparison of the two agricultural sunflower systems shows that irrigated sunflower have lower GHG emission due to the high productivity compared with rainfed.

LCIA results


- Irrigated sunflower had lower impacts than rainfed sunflower (mainly due to a high productivity of irrigated sunflower).
- The most significant contribution were cultivation emissions (mainly NO₃⁻, but also NH₃ and NO_x emissions), that represent more than 96% of the impacts in both agricultural practices.

LCIA results

- The impacts were slightly higher for irrigated sunflower, due to fertilizers (production and use), with NH₃ emissions representing about 43% of all emissions.
- For rainfed sunflower, machinery (with diesel production and combustion) was the main contributor to the impacts: 92% of total TA

LCIA results

- The impacts were 39% higher for irrigated sunflower than rainfed, due to the production and use of triple superphosphate fertilizer.
- The main contributor to the impacts were (in both cultivation practices) cultivation emissions.

Conclusions

- Rainfed sunflower had higher environmental impacts in CC and ME essentially because of the low productivity per ha (650 kg (ha*year)⁻¹) and in ME due to high NO₃⁻ emissions.
- Sunflower cultivated in irrigated land (3000 kg (ha*year)⁻¹) had higher impacts in TA and FWE due to the use of fertilisers.
- LUC scenarios showed a huge variation in the GHG intensity for sunflower seeds in Portugal, (0.3-22 kg CO₂eq kg_{seeds}⁻¹).

Conversion of SD grassland into irrigated sunflower

Conversion of perennial crops (NT, w/) into rainfed sunflower

The results demonstrate that both agricultural practices and

LUC scenarios have an important influence on GHG intensity.

Thank you!

Questions and Comments

Center for Industrial Ecology http://www2.dem.uc.pt/CenterIndustrialEcology Faculty of Sciences and Technology University of Coimbra.

This research was supported by project ECODEEP (Eco-efficiency and Eco-management in the Agro Industrial sector, FCOMP–05–0128–FEDER–018643) and the Portuguese Science and Technology Foundation projects: MIT/SET/0014/2009, PTDC/SEN-TRA/117251/2010.

E-mails:

filipa.figueiredo@dem.uc.pt; fausto.freire@dem.uc.pt; erica@dem.uc.pt;

