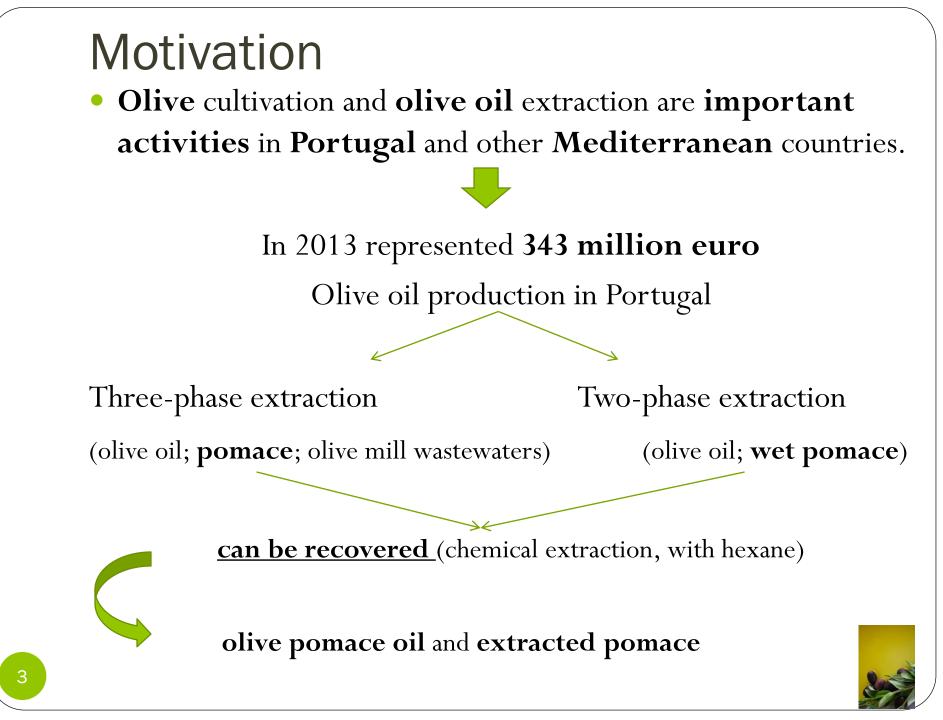
SYMBIOSIS INTERNATIONAL CONFERENCE 2014 19-21 June 2014, Athens, Greece.

Greenhouse gas assessment of olive oil in Portugal addressing the valorization of olive mill waste

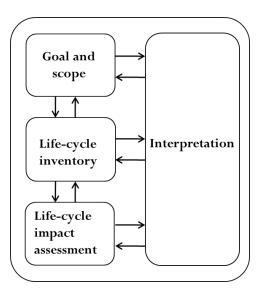
F. Figueiredo¹, P. Marques¹, É.G. Castanheira¹, L. Kulay^{1,2} and <u>F. Freire¹</u>

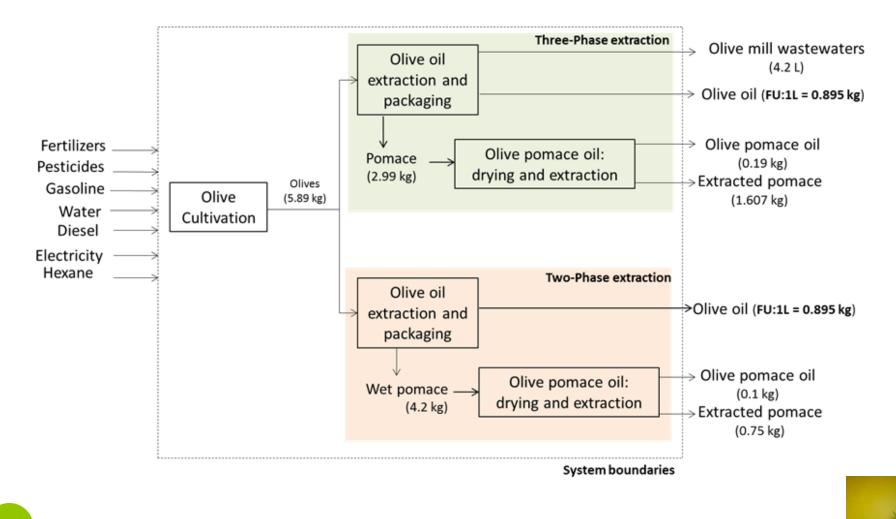
http://www2.dem.uc.pt/CenterIndustrialEcology

¹ ADAI-LAETA, Center for Industrial Ecology, Department of Mechanical Engineering, University of Coimbra Rua Luís Reis Santos, 3030-788 Coimbra, Portugal


² Group of Pollution Prevention GP2, Chemical Engineering Department University of Sao Paulo Sao Paulo, Brazil

Outline


- Introduction
 - Motivation
 - Objective
- Methods
 - Life-Cycle Model and Inventory
 - Multifunctionality
- Results
- Conclusions


Main Objective

- Present a comparative a GHG life-cycle assessment (LCA) of olive oil produced from three and two-phase extraction mills, addressing the valorization of olive pomace (produced with olive oil) to produce olive pomace oil and extracted pomace
- LCA methodology

Life-cycle model

Inventory - Cultivation

Inputs		Intensive producer	Units (per ha)
Fertilizers			
	Ν	110	kg
	Р	48.0	kg
	K	129	kg
	Urea	37.5	kg
	Borum	0.47	kg
Pesticides (a.s.)			
	Copper oxychloride	10.0	kg
	Tubeconazol	0.15	kg
	Glyphosate	2.90	kg
	Dimethoate	3.60	kg
Energy			
	Diesel	86.0	L
	Gasoline	14.0	L
	Electricity	880	kWh
Water		2000	m ³

- An intensive cultivation system
- 71% of the total olive production in Portugal in 2013
- require irrigation
- High level of fertilization and phytosanitary control
- Productivity of about 10 tonnes per hectare

Inventory – extraction Olive oil

Inputs	Three-phase	Two-phase	Unit
1	olive mill	olive mill	(per L)
Olives	5.89	5.89	kg
Electricity	0.269	0.269	kWh
Propane	0.01	-	kg
Water	4.82	1.24	L
Outputs			
Olive oil	1.00	1.00	L
Pomace	2.99	4.2	kg

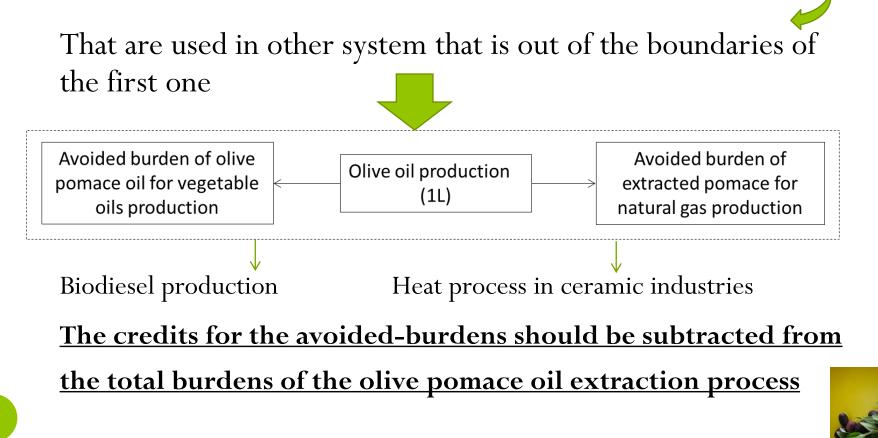
- The efficiency was considered similar from both types of extraction;
- Two-phase extraction originates olive oil and wet pomace with 80% moisture (mc wb), which hinders transportation.
- Three-phase extraction generate olive oil, pomace (40% mc wb) and olive mill wastewater (aerobic lagoons).

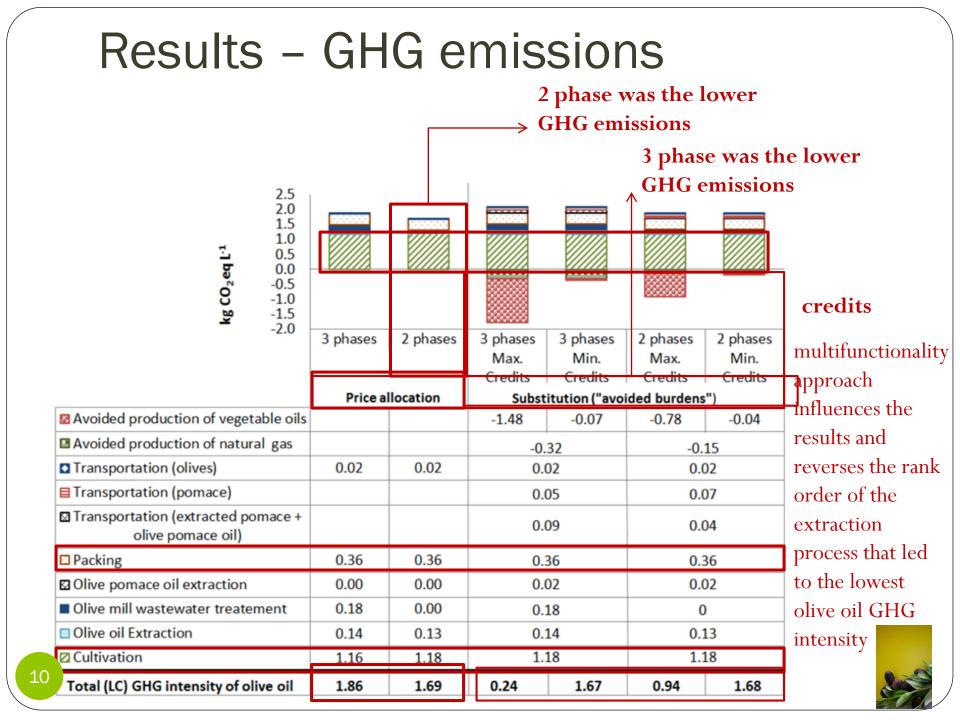
Olive pomace oil

Inputs	Three-phase olive pomace oil mill	Two-phase olive pomace oil mill	Units (per t)
Olive pomace	16	41	t
Electricity	78	95	kWh
Diesel	20	50	L
Hexane	1.1	1.1	kg
Extracted pomace	0.6	1.85	t
Products			
Extracted pomace	8.60	7.35	t
Olive pomace oil	1	1	t

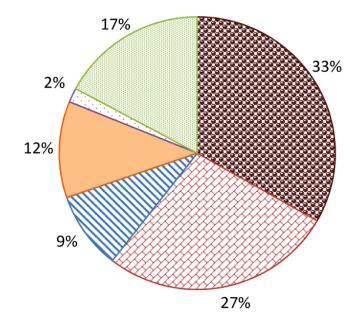
- Drying of pomace from two-phase mill requires more energy
- Pomace from two-phase mill
 originates less extracted pomace
 and olive pomace

Multifunctionality: price based allocation vs. substitution ("avoided burdens") (1)


- <u>Olive oil production is a multifunctional process</u>
- Price allocation:


Mass quantities Price allocation	
TypologyCo-productMass quantities $(kg/L_{olive oil})$ Price (\notin/t) Factor	
Olive oil 0.895 5587 98.5%	olive oil is 220
3 phase	
Olive oil Pomace 2.99 (b) 25 1.5%	higher than pomace
extraction 2 phase Olive oil 0.895 5587 99.6%	olive oil is 1100
Wet Pomace 4.2 (c) 5 0.4%	higher than pomace

 Price allocation in olive oil production is approximately the same that allocating all impacts to olive oil



Multifunctionality: price based allocation vs. substitution ("avoided burdens") (2)

Cultivation results – Main contributors to GHG emissions

Fertilization field emissions

Fertilizers production

Pesticides production

- Diesel (production and combustion)
- Gasoline (production and combustion)

Electicity

Conclusions (1)

- **Cultivation** was the life-cycle phase that **contributes more** to the **total GHG intensity** of olive oil production, **followed by packing**;
- Multifunctionality approaches significantly influences the results and even reverses the rank order of the extraction process that led to the lowest olive oil GHG intensity;
- **Price allocation**: olive oil from **two-phase** extraction has the **lowest GHG** emissions;
- "Avoided burdens approach": olive oil from threephase extraction has the lowest GHG emissions;

Conclusions (2)

- **Results** with "avoided burdens" are highly dependent on the credits associated with the virgin oil (there is a huge variation in the literature) displacing olive pomace oil;
- This study shows the importance of olive pomace valorization to promote an industrial ecology system in olive oil chain and reduce the life-cycle GHG intensity of olive oil;
- Work within the on-going project (ECODEEP) supporting this research is addressing other types of wastewater treatment systems and environmental impact categories.

SYMBIOSIS INTERNATIONAL CONFERENCE 2014 19-21 June 2014, Athens, Greece.

Thank you, Questions and Comments

Greenhouse gas assessment of olive oil in Portugal addressing the valorization of olive mill waste

F. Figueiredo, P. Marques, É.G. Castanheira, L. Kulay and <u>F. Freire</u>

http://www2.dem.uc.pt/CenterIndustrialEcology

Acknowledgements

This research was supported by project ECODEEP (Eco-efficiency and Eco-management in the Agro Industrial sector, FCOMP-05-0128-FEDER-018643), EMSURE - Energy and Mobility for SUstainable Regions (CENTRO-07-0224-FEDER-002004) and the Portuguese Science and Technology Foundation projects: PTDC/SEN-TRA/117251/2010 and PTDC/EMS-ENE/1839/2012.

ymbi@sis

