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A numerical model is presented for the simultaneous calculation of velocity and temperature
fields, and fire propagation in mountain ridges. Turbulent fluid flow calculations are
performed using the SIMPLEC procedure applied to a boundary-fitted coordinate system,
while the fire rate of spread is computed using a combination of Rothermel’s fire spread
model, a two-semi-ellipse formulation for fire shape, and the Dijkstra dynamic programming
algorithm for fire growth simulation. To assess the influence of the ridge geometry upon
isothermal flow, calculations are carried out for different height configurations. Fire
computations are then made for the same configurations, and for each configuration, two
types of fuel are tested. Results show a higher rate of spread for the ridge with the lower
intersection angle, confirming observations that report unusually high propagation rates of
fires in these topographies.

INTRODUCTION

Wildland fires occurring in complex terrain very often take on dramatic
proportions, which may result in high material costs, not to mention tragic loss of
human lives. Among large fires that occur worldwide, a few have been singled out
due to dangerous behavior. The aim of the present paper is to provide a better
understanding of the high propagation rates of fires occurring in mountain ridges,
a topography that, in the past, has been related to large, lethal fires. This
topography can be visualized as the intersection of two inclined slopes with the
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NOMENCLATURE
ag,dy,... coefficients of the discretized u, velocity component parallel
equations to the wall
a, a, variables in the ellipse definition uv,w contravariant velocity
A burned and burning areas components
¢, p,b,d  variables in the ellipse definition U; u=U0U0=VU=W
, pressure coefficient Uy free stream velocity; incident
C,,C,,C; turbulence model constants wind speed
D, E turbulence model constants ¥i4 equivalent wind speed
Jis £, damping functions in the Y, wind speed equivalent to slope
turbulence model v, wind speed at midflame height
gl contravariant metric relations Vel local velocity magnitude
g gravity acceleration in direction i XYz axis of Cartesian coordinate
G buoyancy term in the turbulence system
model X; X=X X =),X3=2Z
T reaction intensity o, 8, ¢ angles characterizing the ridge
J Jacobian of the transformation r generic diffusion coefficient
k turbulence kinetic energy 8, Kronecker delta
n distance to the wall e,E total and isotropic dissipation of
B pressure turbulent kinetic energy
1l pressure correction M ey dynamic viscosity (laminar and
Py, Qf, Ry control functions turbulent)
P, reference pressure Hegr effective dynamic viscosity
P wall static pressure (= p+ p)
P, production of turbulent kinetic En i axis of the curvilinear coordinate
energy system
0O, heat of pre-ignition & =8 6=0&=1{
R rate of spread T propagating flux ratio
Rey, local turbulence Reynolds P density
number Po bulk density
Re, turbulence Reynolds number Po reference density
Ser Sy generic source term o laminar Prandtl number
S*. 5 * source terms in P’ equation oy, oy, g, turbulent Prandtl number
I3 time for T, k,and &
7 temperature ¢ generic variable
u,v,w Cartesian velocity components bp, Uy control functions
u*, v*,w*  starred velocities b, b, slope and wind factors
u; Uy =U, Uy =V, U3 =W ) effective heating number

ground, as shown in Figure 1. It is widely recognized that the ability to predict the
rate of spread of a fire is of outmost importance for planning an efficient attack
and rapid suppression. Among the several models that have been proposed to
describe the rate of spread of wind-driven fires, Rothermel’s model [1], with its
application in the Behave system [2], has been one of the most popular and widely
used fire-spread models. This system, however, requires a priori knowledge of the
midflame wind speed, which limits its use for complex terrain topography, where
wind speed is extremely difficult to estimate. The present approach is designed to
bridge this gap, by proposing a computational procedure that integrates a numeri-
cal algorithm for turbulent three-dimensional flow calculations over general topog-
raphy with a fire propagation model based on Rothermel’s work for the calculation
of fire spread.
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Figure 1. Ridge geometrical parameters,

GRID GENERATION

For appropriate discretization of the equations in the selected domain, a
boundary-fitted coordinate system is employed, by which a complex physical region
is transformed into a “regular” computational domain. The use of a generalized
coordinate system allows the integration of the transport equations governing fluid
motion to be done in the computational domain (&, n, ¢ ), which for convenience,
may be taken as cubic with a unit mesh spacing. This procedure greatly simplifies
the numerical procedure, since the resolution of the transport equations is carried
out in a rectangular region, where their integration, as well as the imposition of
boundary conditions, is more straightforward and accurate than if a Cartesian
system was employed.

The accuracy of the solution obtained and its numerical stability are highly
dependent on the grid used, which should be smooth, refined in locations where
high gradients are expected to occur, and with a low degree of skewness. To meet
these requirements, in the present work a nonorthogonal three-dimensional grid
was generated by solving a set of elliptic equations, the mathematical formulation
of which is presented in Eq. (1), and which expresses a relation between the
physical (x, y, z) and computational (&, 0, { ) coordinates.

bt &, + &, =P(E,0,0) + ¢ (£,7,0)NAEI
N + My + M = Q(E,m,0) + W (&,m, O)lA) (1)

g):‘x + gy_y i ;zz e Rr(fs"?s.f:)

This method was developed by Thompson et al. [3], and further refined by
other authors through the introduction of specific control functions. These control
functions are designed to allow proper adjustment of the clustering (control
function R;) and orthogonality (control functions P; and Q,) of grid lines near the
boundaries. Provisions may also be made to transmit the grid spacing to the
interior of the domain (control functions ¢; and ;). Since the above equations
are to be solved in the computational domain, the dependent and independent
variables must be interchanged, yielding the following system of equations:

a,(rg + dgr,) + az(r,m + Wr,) + ay(rg) + 2( Byrg, + Baro + Bsrg)

= —J(Pry + Qyr, + Ryry)
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ay =JH(VE-VE) ay =T*(Vn- V) as =T (V- V) (2)
By =J*(VE- V) B, =T*(Vn- VL) By =J*(V¢ - VE)

where r = (x, y, z).

These equations are discretized in the computational domain using second-
order differencing and are solved with an iterative numerical technique. The
boundary conditions for these equations are imposed by specifying the physical
coordinates of the boundary grid points defined on two opposite boundaries.

NUMERICAL METHOD FOR FLUID FLOW AND TEMPERATURE
CALCULATIONS

Transport Equations

The wind field required as an input for the fire propagation model is
obtained through the solution of the steady-state Navier-Stokes (NS) equations
formulated in a boundary fitted coordinate system. The Boussinesq approximation
for the density variations is not employed, and the governing equations written in
their tensorial Cartesian form are:

Conservation of momentum

J P 3 du; 2
a—(pu,-uj) =—-——+ —|T|2— - =divV
X

! dx;  dx; dx; 3
d du,  du. 2 d( pk)
+—|T|—+ —=||-= + pg; 3a
8x1[ (ax! ax,.)] 3 dx; Péi ©8)
where I' = p + p,.
Conservation of mass
a( pu;)
— = (3b)
dx;
Conservation of energy
—(pu,T) = —|I'— | + — c
ax; P4 ax; \ dx; €y

where I' = (u/0y) + (p /).

Turbulence effects upon the mean flow and temperature fields are modeled
through the eddy viscosity concept, which states that turbulent stresses are related
to the mean strain rate via the turbulent viscosity by the following equation:

du;  du; 2 g
ax;  dx; il Hox,

3

—puu; = 5 Pk) 4)

The calculation of the eddy viscosity is performed with a low Reynolds
number k—& model, in a formulation similar to the one proposed by Zhang and
Sousa [4], but extended to generalized coordinates in three dimensions. The
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Cartesian form of the corresponding equations is

My | Ok ”
,u,+;k E +P1+G—pS+D1

% Cpuk) = —
ol = ——
ax; P ax;

i

where
P ’ J(;ui (5)
1= TPUU; ox,
C, pk? aT
§=S+D1 i'l'l:p. "’f G:—Bgﬁ_
£ o, dz
vk : pk?
Di = —2}.& — Lyt =ar
an ME
J A & i
E(PH;S) = Tx, 9_: + E[CI(PI + C,G) — C,f, pe]l + E
i Re,. \T?
Ju=[1—ep| =565 )
m (1 = £,)*
fi=1-03exp(—Re?) E=—"%"
p
pvkn
Re,, =
I

« = 0.09 C, =145 C,=19

w

C, = tanh —|
u

o, =1 o =13

The variables n and u, in the original formulation [4], were taken as the
normal distance to the closest wall and the velocity component parallel to the wall,
respectively.

Transformation of the Equations

The original transport equations presented above are transformed from the
physical domain (x,y,z) to the computational domain (£,7,¢) through the
substitution of the independent Cartesian variables by the deformed grid variables.
In the present approach, the Cartesian components of the velocity are kept as the
dependent variables, since the choice of the covariant or the contravariant velocity
components would lead to a much more complicated set of equations. Thus, a
partial transformation is used, as opposed to a total transformation, which is
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accomplished by application of the chain rule:

ip I % . ana¢+ o b
dx; dx; df  ax; on = Ix, oL

i i A

e + ﬂx,% Tl (6)

= gr,- X; (?g

where & are the metrics of the transformation. After Eq. (6) is used for
substitution of the dependent variables, the metric identity, the mathematical
formulation of which is given by
d
3

d

d
(fo') + ‘?—n(f‘qx‘_) + T

(Jg,) =0 (7)

is evoked to set the transformed equations in the strong conservation law form [5].
The resulting set of equations, written in terms of a generic velocity compo-
nent u,, is as follows:

Momentum equations

(JpU.u;) oy o 3 J
65’, pulu;) = ox, 8§j G Meegp

9E, | dx; ox; 9, 3 dx, ox, J¢,

( du,  9¢, 9§, du; 2 9, 9, du,
3 g’ﬂn_ + —

2 [ a¢ a( pk)
—EJ(E r?ff )—Jg,-(p‘ﬂu) (8)
Continuity equation
- (pJU) =0 9)
5_1_’,:,- P ;) = (

For a generic scalar ¢, which in the present work stands for T, k, or Z, the
corresponding transport equation in the computational domain is

2 oty = || g22
GE, pU o) = 9, 8 9E

J +JS, (10)

where S, is a general source term. In the previous equations, U, represent the
contravariant components of the velocity vector, defined as

Up=lU=dfut fo+Ew U=V=nu+nv+mnw

(11)
Uy=W={u+ §_er + {w
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where J is the transformation Jacobian:

Xe Xy X
I=\y: Yo W (12)
g In I

The contravariant metric relations g%,

& g
ax,, dx,

i —

(13)

are computed numerically through the contravariant metric relations [5], applying
central differences to the coordinates of the grid points represented by triangles in
Figure 2.

Numerical Algorithm

A staggered grid [6] is adopted for the location of the three components of
the velocity vector, which are located at the center of each face of the control
volume (contravariant positions). Other scalars, such as temperature and turbu-
lence quantities, are positioned at the geometric center of the control volumes, as
shown in Figure 2. A control volume approach is employed for the integration of
the transport equations in each computational cell [7], which for convenience, is
cubic with a unit mesh spacing. The integration is performed using piecewise linear
profiles for the viscous derivatives, while the convection terms are treated using a
hybrid formulation [7]. The discretized equations are then cast in the following
single general form:

apdp = Za,, ¢y, + Ss 2a,, ¢y = apdp + awdy + aydy + asds
+ ardr + agdy (14)

where E is cast, W is west, N is north, S is south, T is top, B is bottom, ¢ is a
generic variable, and S, is the source term.

Continuity and momentum equations are linked through pressure following
the SIMPLEC procedure [8], in a formulation adapted to a boundary-fitted coordi-

(ig+lk+l) (i+]j+1 k+1)
A

(i+l 1').k+l )

w - €«
ey 2
m z A .

Figure 2. Typical control volume in the computational domain.
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nate system. For this purpose, three simplified momentum equations are written in
each contravariant position of the control volume. Substitution of these equations

in the continuity equation allows the obtainment of the following pressure correc-
tion equation:

ApPp = Y APy, + S* + S** (15)

where

2 r '
S** — _DJ (812 JP +glj op ]
a?‘ - Zanb 57? ‘9{ E

and

§* = [CpD (e + g™ + EwD)], — [P G + 60 + )],
+[CpD(u* + mo* + mw®)] = [CoD(nu* + ot + nw)]
+H[CpD(Gu* + go* + Lw")], = [(pD(Lu* + L* + Lw)],

In the equations above, u*, v*, and w* are the starred velocities, obtained through
the solution of the momentum equations. The term S** is quite small in compari-
son with the other terms of Eq. (15) and was neglected in the present work, as
proposed in Ref. [9]. The pressure correction field obtained through the resolution
of the previous equations is used to correct three velocity components in each
control volume face, using expressions like the one presented next for the west
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face:
. 1 7 P’ 3 P’ y aP"\]
u uy + T el
W w a,i;_ Zanb g.l.‘ 55 nx 57? gz aé— s
. 1 p P’ s P’ e aP'\] a8
UDyw =y + - + — —_—
VoWt T, o Tty lw
i 1 s aP'H dP’ g aP'\]
Ww = Wy + - SN
w W ay — 2%1; [ 2 pY: 7. an (4 a .
where
aP! ' !
Py = Fi,jiy — Fi-1,j,0
P’ _ Pi_v,ie1,0 F Fijery — Pi-1.j-1.1 =B i
an 4
apP’ i Ba-t3ke 1y F o a1y —Foeiik-iy = Pl k=1
74 4

The discretized transport equations are solved using the tridiagonal matrix
algorithm (TDMA) [7] with sweeps in the three computational directions. For the
pressure correction equation, a three-level multigrid technique [10] is used in
conjunction with the TDMA.

Boundary Conditions

Due to the symmetry of the problem, the computations were carried out in
half of the physical domain. Velocity, temperature, and turbulence quantities are
specified at the inlet of the domain. These were obtained as a solution of the
respective transport equations when the gradients in the two directions perpendicu-
lar to the flow vanish, a situation that corresponds to a developed flow over a flat
plate, with an imposed boundary layer height. At the other boundaries, except for
the ground, the second derivatives of scalars are made equal to zero. At the bottom
boundary (the ground), an adiabatic condition is imposed for the energy equation,
while for momentum, a no-slip impervious boundary is considered. The contravari-
ant velocity components perpendicular to the boundaries are constrained by global
mass conservation. :

Due to the nature of the staggered grid, the boundary conditions for scalars
and for the Cartesian velocity components parallel to the boundaries are imposed
by recourse to fictitious points lying outside the computational domain.

The main steps of the numerical procedure can be summarized as follows.

1. Initialization of the variables.

2. Imposition of boundary conditions through computation of the variables
of the fictitious points.

3. Computation of the coefficients for the momentum and P’ equations.
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4. Resolution of one momentum equation per control volume.

Computation of the contravariant velocities.

6. Imposition of global mass conservation by assigning proper values to the

contravariant velocities at the boundaries.
7. Computation of the source term for the P’ equations.
Calculation of the P’ field.
9. Correction of the three Cartesian velocities in each face of the control

volumes, and calculation of the new contravariant velocities.

10.  Correction of the pressure field.

11. Calculation of the coefficients of the transport equations for other
scalars (T, k, and &).

12.  Resolution of the transport equations for other scalars.

13. Return to step 2, until prespecified convergence criteria are satisfied.

b

=5

The algorithm previously described proved to be very stable and robust, with
excellent capabilities to predict a wide range of flows. Memory storage require-
ments are higher than for a Cartesian approach, due to the necessity of storage of
two additional velocity components in each control volume face, as well as the
metric relations. Computer time, however, is not significantly higher than that
typically needed for Cartesian calculations.

THE FIRE SPREAD MODEL

The model for fire propagation used in the present study can be decomposed
in three main parts:

e Fire rate of spread in the direction of maximum spread is computed using
the equations proposed by Rothermel [1].

» A model of double ellipse is used to compute fire spread in any arbitrary
direction [11].

e The fire propagation from cell to cell is computed using Dijkstra’s dynamic
programming algorithm [12].

Each of these parts will be presented separately below.

Rothermel’s Model for Fire Spread Calculation

Rothermel’s model [1] is an empirical fire-spread model, developed essen-
tially from laboratory experiments (as opposed to field experiments), using three
artificial fuels (random excelsior fuel beds, regular-geometry fuel beds made of
wood sticks arranged in two configurations, and grasslike natural fuel beds). The
model was developed for a stationary fire spread in a statistically homogeneous
fuel bed, at least in what concerns relevant parameters, and is not suited to be
applied to high-intensity fires, crown fires, or fires where spotting plays a relevant
role in fire spread. A recent review of Rothermel’s model is presented in Ref. [13].

The keystone of the model is Eq. (17), which expresses an energy balance
within a unit volume of the fuel ahead of the flame. It illustrates the concept that
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the rate of spread R is just a ratio between the rate of heating of the fuel, and the
energy required to bring that same fuel to ignition.

ILa(1+ &, + ¢,)
R =

(17)
Py in

where R is rate of spread (m/s), I, is reaction intensity (heat released per unit area
of the flame front) [J/(m? s)], = is the propagating flux ratio (fraction of heat
release that is responsible for fuel heating and consequent ignition), &, is the wind
factor, &, is the slope factor, p, is bulk density (mass of fuel per unit volume)
(kg/m?), w is the effective heating number (ratio between the bulk density and the
mass of fuel involved in the ignition process), and Q; is the heat of pre-ignition
(heat required to bring a unit weight of fuel to ignition) (J /kg).

All the quantities in Eq. (17) are calculated using the fuel and environmental
characteristics supplied by the user, which are

» oven-dry fuel loading (kg/m?)

e fuel depth (m)

» fuel particle surface-area-to-volume ratio (m™")

oven-dry particle density (kg/m?)

fuel particle moisture content as a fraction of dry weight
fuel particle mineral content

wind speed and direction at midflame height (m/s)

terrain topography (slope and direction of maximum slope)

A detailed explanation of this fire spread model and respective equations is given
in Ref. [1].

The effect of wind and slope is described by the two coefficients ¢, and ¢,
in Eq. (17). The quantity 1 is a unity vector aligned with the vector ¢, + ¢, which
takes into account the isotropic component of the fire rate of spread for a situation
of no wind and no slope.

The Double Ellipse Model

Rothermel’s model gives as output the spread rate in the maximum spread
direction, but it does not provide any information about fire size and shape.
Information concerning these two parameters is, however, of vital importance for
fire control and suppression. A forest fire burning in nonhorizontal terrain, or
burning under windy atmospheric conditions, acquires an approximately elliptical
shape. Anderson [11], using data from several fire experiments, proposed a two-
semi-ellipse fire-shape model, whose equations, Eqgs. (18), are used in the present
study to compute the size and shape of a fire. The equations correspond to the
diagram in Figure 3.

¢ = 0.492e(70184%V0)  p — (0.542¢(0-1483V)

-0.3

a, = 2.502(88V,,) a,=1+c¢—a, (18)

b= 0.5346(_0'1147V°'4] d=1
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n e ]

Figure 3. Anderson’s [11] two-semi-ellipse fire-shape
model. Parameters are defined by Eq. (18).

The ellipse parameters presented in Eq. (18) are nondimensionalized by the
fire-spread distance measured in the direction of maximum spread. The variable
V., in Egs. (18) is an equivalent velocity that combines both the effects of velocity
and slope on fire propagation, and it is defined as

Vg™ IVqu Y=Y+ N (19)

where V, is the wind velocity at midflame height and V, a hypothetical wind
velocity that would produce an effect equivalent to the one produced by local
slope, on fire characteristics.

Dijkstra’s Algorithm

In most forest fires, as may be expected, fuel characteristics have large spatial
variations. Rothermel’s model, however, was developed for homogeneous fuel beds.
Therefore, simulation of fire growth in the presence of spatial nonhomogeneities of
the various parameters governing fire spread requires a subdivision of the domain
in cells, in which the input conditions are assumed as locally homogeneous. In the
present case, the fuel is considered as homogeneous, and the spatially changing
conditions are slope, wind velocity, and wind direction. Starting with a certain
number of ignited cells, the fire-spread calculation is a matter of finding the next
cell to ignite, which may not be the closest one. Dijkstra’s dynamic programming
algorithm is thus a procedure designed to find the shortest path between a
specified pair of nodes. For each burning cell, the time that the fire takes to
propagate to all its “neighbors” is computed with Rothermel’s model and the
two-semi-ellipse model. The instant of time for which each nonburning cell may be
ignited is computed, and the next cell to ignite will be the one with the lowest
assigned value.

The concept of “neighborhood” plays, in the present context, a particularly
important role. For a given burning cell, the number and position of surrounding
cells, defined as neighbors, have a decisive role in the accuracy of the simulated
fire shape [14], relative to the correct solution taken as the ellipse. Figure 4 depicts
a generic burning cell, represented by the shaded rectangle, and the corresponding
neighbors considered in the present work.
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THE OVERALL MODEL

Interaction between the fire-spread model and flow-field calculations is
undertaken through a process of sequential computations, in which the velocity
field obtained in a certain time instant is used as input to Rothermel’s fire-spread
model, and vice versa. This process is described in more detail in the subsequent
sections.

Grids

For computational expediency, and within the objectives and expected accu-
racy of the model used in the present study, the calculations were carried out in
two different grids; a coarse, three-dimensional grid, where temperature and
velocity fields were computed; and a finer, quasi-two-dimensional grid, mapping
the ridge surface, where fire size and shape were calculated. Information between
these two grids is interchanged through linear three-dimensional interpolation.

Interaction of Fire and Flow Field

The heat released by the fire is responsible both for ignition of the fuel ahead
of the flame front, due to heat transfer to the fuel, as well as for heating of the air
and soil. Rothermel’s model provides a means of quantifying both the total heat
release and the part of this heat absorbed by the fuel, by defining the variable r,
the propagating flux ratio. For the remaining energy, based on some experimental
evidence, it was considered that 15% was absorbed by the soil and 85% was
responsible for air heating. Treatment of the fuel bed immediately after the
passage of the flame front was done by assigning an exponential decay of heat
release, using a physically realistic relaxation time chosen to match field data.

Effects of fire on the velocity and temperature fields were introduced in the
numerical model by imposing a volumetric heat release through the first row of
control volumes adjacent to the surface. The amount of heat release was computed
as a linear function of the burning ground area.

Numerical Procedure

The solution is carried out iteratively, starting with a nearly punctual fire.
Taking as initial condition the velocity field computed for an isothermal situation, a
few newly ignited cells are computed in the “fine grid,” and the instant of time at

Wind di

——

B TE St

[ ———————— A . b 2 e e+ e e e e

Figure 4. Definition of “neighborhood” considered in the present work.
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Filter + honeycomd

Figure 5. Schematic view of the wind tunnel.

which each cell ignites is registered. The computation is then transferred to the
“coarse grid,” where the heat release rate through each control volume is calcu-
lated as a linear function of the percentage burning area of the control volume.
Velocity, temperature, and turbulent quantities are solved, and after convergence
of the iterative method, the new velocity field is interpolated to the fine grid, and a
few new cells are ignited. The process is continued until the burning/burned area
reaches a specified limit.

The progression of the process with time is thus controlled by the combustion
model. To avoid very large changes in the velocity field, the number of cells ignited
within each cycle is made sufficiently small, typically around 10% of the already
ignited cells.

VALIDATION OF THE NUMERICAL MODEL

The numerical model for turbulent flow calculations presented here was
validated against experimental results obtained in a wind tunnel. The wind tunnel
used in the experiments had a closed test section of 1 X 1 m and was of the suction
type. Due to the relatively short distance available to uniformize the flow and
develop a turbulent boundary layer, a set of 12 shark teeth was positioned at the
inlet section, along with a honeycomb and a filter, as shown in the schematic view
of the wind tunnel represented in Figure 5.

The wind tunnel experiments were not designed to simulate the actual
conditions. Instead, the aim was the validation of the numerical model for the
calculation of turbulent flow. Thus, for experimental convenience, the geometry
shown in Figure 1 was slightly modified through the introduction of a horizontal
flat plate downstream of the point of intersection of the two slopes and the ground.
The ridge shape used in the experimental setup can be seen in Figure 6, which also
represents the grid used in the numerical calculations. The values for the angles «
and 6 corresponding to this configuration are 90° and 30°, respectively.

The comparison between numerical and experimental results was made for
an isothermal situation. The incident turbulent boundary layer was characterized
by a free stream velocity of 4.4 m/s and by a boundary layer height of 0.16 m. In
order to check the symmetry of the flow and to establish the effects of the lateral
wall, several velocity profiles were measured with a Pitot tube, in the region of the
ridge, at different distances from the vertical plane of symmetry. Results indicate
that the flow is quite symmetric, exhibiting nevertheless a marked wall effect in the
regions where y > 0.2 m or y < —0.2 m. Some of the experimental velocity
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profiles obtained are represented in Figure 7a where the velocity is nondimension-
alized by the free stream velocity. Figure 7b depicts the experimental velocity
profile obtained at the wind tunnel symmetry plane, along with the incident
velocity profile obtained from the numerical simulations.

The comparison of the experimental and numerical results is presented here
in terms of the distribution of the pressure coefficient ¢,, defined in Eq. (20), along
the x direction:

‘D_n

w

ek, Wl 20
» = 05002 20)

For the measurement of ¢, a total of 230 pressure taps were made on the
surface of the model, in its right side (y < 0). Figure 8 shows some of the
measurements obtained, for various distances to the ridge symmetry plane. In these
figures the slope region is represented by the thick line in the lower part of the
graphics. Analysis of these graphics shows very good agreement between the
experimentally and numerically obtained values. The initial increase of c,, due toa
partially stagnant region near the slope, is followed by an abrupt drop of pressure
motivated by the accelerating flow. Values of ¢, reach a minimum slightly after the
transition to the downstream horizontal plate. This minimum was not fully pre-
dicted by numerical simulation, particularly in the regions far away from the ridge
symmetry plane. This slight discrepancy is probably caused by the boundary layer
characteristics prevailing in these regions, as indicated in Figure 7a. Possible
limitations of the turbulence model may also have largely contributed to this
discrepancy.

ISOTHERMAL FLOW OVER THE RIDGE

Before presenting the fire propagation results, it is helpful to understand how
the isothermal flow ficld depends on the ridge geometry. For this purpose, several

Figure 6. Grid used for the numerical experiments con-
cerning the validation of the algorithm.
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Figure 7. Boundary layer profile. (a) Experimental values
for different distances from the wind tunnel plane of
symmetry. (b) Comparison between numerical and experi-
mental values at the wind tunnel symmetry plane.

different ridge configurations were considered, with each geometry defined by a
fixed combination of the angles a and 6, the angle of intersection of the slopes
and the angle of inclination, respectively (Figure 1). The geometries studied may be
grouped into two different sets. In the first set, S,, the angle # was kept constant,
while o was changed. In the second set, S,, both a and 6 were changed in such a
way that the angle ¢, the angle of inclination of the slopes in the main flow
direction, remained constant. Computations were carried out for each geometry
listed in Table 1, and the free stream velocity was taken as 7 m/s. After some grid
independence tests, a grid with 22 X 14 X 22 nodes in the x, y, and z directions,
was chosen to carry out the computations.

Unlike the situation simulated in the wind tunnel, all the boundaries were
considered as pervious to the flow, except for the bottom boundary, which corre-
sponds to the ridge.

The characteristics of the flow field for the isothermal situation were investi-
gated for the different geometries in terms of the variation of the magnitude of the
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velocity as a function of the coordinate x, at a constant height above the ground, at
the ridge symmetry plane. The results presented in Figure 9a correspond to S,, for
a constant height of 3 m above the ground. Keeping in mind that the different
situations correspond, in this case, to a change in the angle «, examination of the
figure reveals that an increase of this angle has the effect of decreasing the flow
velocity near the region of intersection of the slopes, due to a localized blockage
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Figure 8. Experimental versus numerical distribution of ¢,:
(@)y=—18cm, (b) y= —23cm,(c) y = —41 cm.
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Table 1. Angles Characterizing the Geometries Considered

Set 1 Set 2
i} a W ] @ v
30 60 16.10 39.23 60 2221
30 90 2221 30 90 22.21
30 120 26.57 25.24 120 22.21
30 180 30 22.21 180 22.21
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effect. Taking into account that an increase of a corresponds, in S,, to an increase
of the slope angle in the main flow direction, one can understand the acceleration
occurring at the outlet of the domain, which becomes more accentuated for higher
values of a. For comparison purposes, the results for a height of 30 m above the
ground are shown in Figure 9b.

The numerical experiments indicate that a decrease of @ produces increased
flow velocities near the slope intersection region, which is physically plausible. In
these experiments, the angle  was not kept constant. However, it might be of
interest to fix this value to aid in further understanding of the flow. Configurations
S, contemplate a constant value ¢ by varying accordingly e and 6, which will be
called a change in the ridge effect. These results are presented in Figures 10a and
106 for heights of 3 m and 30 m above the ridge surface, respectively.
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Table 2. Characteristics of the Fuels

- 2 Rate of spread, m /min
Reaction intensity,

kW ,/m? Uy=0m/s Uy=5m/s
Fuel a 501 1.2 66
Fuel b 465 0.174 3.54

Examination of these graphs shows that the single point of intersection of the
curves tends to disappear. This implies that an increase of the ridge effect results
in an overall enhancement of the flow velocity, a fact that was not verified in set S,.
As a conclusion, we may say that a change in the angle of intersection of the slopes
plays as important a role in flow acceleration as the angle of the slopes in the main
flow direction.

RESULTS FOR FIRE PROPAGATION

Numerical simulations of fire growth were performed using two different
types of fuel, characterized by distinct reaction intensities and rates of spread. The
characteristics of the fuels were taken from data published by Rothermel [1], and
they correspond to a tall grass field and to debris of light logging slash, hereafter
designated as fuel models a and b, respectively (fuel models 2 and 9, respectively,
in Ref. [1]). As a reference, the characteristic fire-spread rate and reaction intensity
for these two fuels, considering a fuel moisture of 10%, for a no-wind condition,
and for an incident wind speed of 5 m /s, both in flat terrain, are given in Table 2.
It can be seen from this table that these two fuels are characterized by quite
different typical rates of spread, as well as by different relative reactions to wind
speed.

The grids used for the calculation of air flow field and fire propagation are
depicted in Figures 11a and 11b, respectively. For all the cases considered, which
correspond to the ridge configurations listed in Table 1, the fire was ignited at the
point of intersection of the slopes with the ground, and the incident wind velocity
was set to 7 m/s. Figure 124 represents the fire growth, for fuel a, in terms of
burning and burned areas as a function of the time elapsed since fire start, for S,.
Figure 12b depicts the same result for S,. These graphs clearly indicate an initial
fire acceleration phase, followed by a transition to a steady state regime. The
dependence of fire-spread velocity with the geometry of the ridge is in accordance
with the velocity field characteristics examined in the previous section. Also
apparent from these plots is that the differences in fire rate of spread for the
several geometric ridge configurations are more pronounced at the initial stages of
fire growth. The fire shape for fuel a, for three different ridge configurations, may
be observed in Figure 13, where the shaded areas are the fire contours at the
specified times. The time origin is the instant of fire ignition ( = 0), and in these
figures the velocity vectors correspond to the latest instant of time. The difference
in plume shape for these two situations is clearly noticeable. Figure 14 shows the
corresponding results for fuel b.
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An interesting feature arising from the comparison of fire shapes is the
different response of the two fuels to the interaction of wind and slope. This
feature is evident if one examines the fire shapes corresponding to each of the
fuels, for the geometries (6 = 39°, @ = 60°) and (6 = 30°, « = 90°). Fuel b, with its
lower sensitivity to wind effects, tends to spread in a direction closer to the main
slope direction, with a consequent formation of two independent symmetrical
fronts. As a final look at the global features of the fire propagation for the
different geometries and both fuels, Table 3 presents the percentage increment of
time necessary for the fire to reach an area of 5000 m?, when the geometry of the
ridge is changed between the two extreme configurations in each set, i.e., from
(6=30° a =60 to (6 =30°% a =180 in S, and from (0 = 39°, a = 60°) to

WIT T

e
QUL L

AN

200 m

(a)

(b)

Figure 11. Grids used for the case (8 = 30°, a = 90°): (a) coarse
grid for air flow calculation, (b) fine grid for fire-shape calculation,
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Figure 12. Burning and burned area (4) as a function of time,
(a) configurations Sy, (b) configurations S,.

(6 =22°, a=180°) in S,. The results listed in this table clearly show that the
fire-spread velocity for the lighter fuel, fuel a, is more sensitive to the ridge
configuration than fuel b, with both fuels experiencing a marked increase of fire
spread with “tighter” ridges, with more pronounced effects for S,.

DISCUSSION AND CONCLUDING REMARKS

Fire behavior is the result of complex, interrelated phenomena, and even with
the best present-day mathematical tools available, it cannot be described and
predicted in quantitative terms with more than fair accuracy. Consequently, the
aim of the present work was to predict the major characteristics of fire spread, as
seen from a qualitative point of view, and to demonstrate how the ridge geometry
can significantly modify fire behavior as related to other terrain topographies, with
consequent increase in danger and risk to the personnel directly involved in the
fire. The results for fire spread and growth show the remarkable role that
topography has on fire spread, stressing the fact that, although the terrain slope is
a relevant factor, the overall geometry may be even more important. In the present
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case, the ridge proved to have an important role in flow acceleration, with evident
consequences in the fire rate of spread. This effect is more pronounced for fuels
with a characteristic rate of spread more sensitive to wind speed, such as light
fuels. One must be aware that the procedure for the calculation of rate of fire
spread presented here is just a first approximation. Nevertheless, it takes into
account in a realistic way the dynamic interaction between fire spread and
consequent changing conditions in the case of complex geometries. It is by far
superior to a stationary approach, and it may prove to be a useful tool to study the

behavior of open, large-scale fires.
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Figure 13. Fire-shape and velocity vectors for incident free stream velocity of 7
m/s, fuel a, first contour for time 50 s, time interval between contours 25 s, and

configurations S,.
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Figure 14. Fire-shape and velocity vectors for incident free stream velocity 7
m/s, fuel b, first contour for time 1000 s, time interval between contours 250 s,
and configurations S,.

Table 3. Percentage Increment of Time Necessary for the Fire to
Reach an Area of 5000 m?, when the Geometry of the Ridge is
Changed Between the Two Extreme Configurations in Each Set

Time increment, %

Set 1 Set 2

Fuel a 73 114
Fuel b 58 82
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