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Abstract—Increasingly, robots have more degrees of freedom
(DOF), imposing a need for calculating more complex dynamics.
As a result, better efficiency in carrying out dynamics compu-
tations is becoming more important. In this study, an efficient
method for computing the joint space inertia matrix (JSIM)
for high DOF serially linked robots is addressed. We call this
method the Geometric Dynamics Algorithm for High number of
robot Joints (GDAHJ). GDAHJ is non-symbolic, preserve simple
formulation, and it is convenient for numerical implementation.
This is achieved by simplifying the way to recursively derive
the mass-matrix exploiting the unique property of each column
of the JSIM and minimizing the number of operations with
O(n2) complexity. Results compare favorably with existing
methods, achieving better performance over state-of-the-art by
Featherstone when applied for robots with more than 13 DOF.

Index Terms—mass-matrix, dynamics, Geometric Dynamics
Algorithm for High number of robot Joints (GDAHJ), high
DOF robots.

I. INTRODUCTION

DYNAMICS of robots is an important topic since that
it is highly involved in their design, simulation and

control. Owing to its importance this subject had been studied
extensively in the past thirty years. Thus, several algorithms
and methods had been developed to calculate robot dynamics
[1] [2]. Nevertheless, this subject remains till this day open
for extensive research while every year there are new studies
being published, methods and algorithms being proposed.

Robot dynamics can be described by one of two formula-
tions:

1) Operational space formulation. In this formulation the
dynamics equations are referenced to the manipulator
end-effector. In a pioneering study this approach was
described and used to control PUMA600 robot [3].
It is also applied for the combined application of
motion and force control [4]. Algorithms for efficient
robot dynamics calculations based on operational space
formulation are presented in [5] and [6].
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2) Joint space formulation. This formulation describes the
dynamics of robot in joint space. This formulation
manifests the effect of the joints’ positions, velocities
and accelerations on the torques and vice-versa.

The mathematical formulation of the inverse dynamics in
joint space [7, 8] is given by:

τ = A(q)q̈ +B(q, q̇)q̇ + g (1)

Where τ is the joints’ torques vector, q is the joints’ positions
vector, q̇ is the vector of joints’ angular velocities, q̈ is the
vector of joints’ angular accelerations, A(q) is joint space
inertia matrix of the robot, B(q, q̇) is the joint space Coriolis
matrix of the robot, and g is the vector of joints’ torques due
to gravity. As described in [9], equation (1) can be extended
to include contact forces, joints elasticity, friction, actuators
inertias and dynamics. A(q) is an n × n matrix, in which
n is the number of robot’s joints considering that each joint
has one degree of freedom (DOF), it is symmetric, positive
definite and has the property of being a function of only
joints’ positions. B(q, q̇) is an n × n matrix, function of
joints’ positions and velocities, and describes the centrifugal
and Coriolis effects on joints’ torques.

One of the earliest methods used to deduce the equations
of robot dynamics was the one based on Lagrangian for-
mulation. This method is well described in the literature.
A methodology for deducing the dynamics of gear-driven
serially linked robot by using Lagrangian formulation is
described in [10]. This study took into consideration the
effects of the driving motors. The Lagrangian formulation
is widely used as the bases for automatic generation of
equations of robot dynamics in symbolic form.

The Lagrangian formulation is a straight forward approach
that treats the robot as a whole and utilizes its Lagrangian, a
function that describes the energy of the mechanical system:

L = T − U (2)

Where L is the Lagrangian function, T is the kinetic energy
and U is the potential energy. The function described previ-
ously is formulated in terms of the generalized coordinates q.
By differentiating that function we can derive an expression
of the associated generalized forces v:

v =
d

dt
(
δL
δq̇

)T − (
δL
δq

)T (3)

Even though the Lagrangian formulation can be considered
as a straight forward approach, the method requires partial
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differentiation. Despite the fact that symbolic manipulation
methods have been utilized to perform the differentiation
[11], the method still lacks the efficiency in terms of
execution-time. This can be clearly noticed when the robot
presents a relatively high number of DOF as noted in [8]
and most remarkably in [12], where the author performed
comparison of execution-times required to run simulations
based on dynamical models derived by Newton-Euler recurs-
ive technique and Euler-Lagrange technique. It was repor-
ted execution-times difference of order of magnitude which
clearly put the case in favor of the Newton-Euler recursion
method.

The formulation of robot-specific dynamics using Kane’s
dynamical equations is in [13]. In this study the authors
argue that using Lagrange method to compute dynamics
produces huge equations resulting in slow execution and
costly computations, while the Recursive Newton-Euler is a
generalized method that might perform unnecessary calcula-
tions on specific robot. Thus, a faster execution algorithm
with less computational-cost could be achieved if robot-
specific equations are carefully deduced. The study elaborates
in step by step manner the methodology for deriving dynam-
ics equations of Stanford manipulator starting from Kane’s
dynamical equations. Nevertheless, the method requires a
knowledgeable analyst to take on a pencil and paper in
hand and work out the equations of a specific robot. A
comprehensive review of Kane’s equations and Gibbs-Appell
equations is in [14].

A computationally efficient Newton-Euler recursive
method is described in [15]. This method is performed in
two phases: the first phase (forward propagation) during
which the accelerations and velocities of robot links are
calculated, and the second phase (backward propagation)
where torques and forces are calculated. The method proved
to be very efficient for calculating the inverse dynamics.
However, the calculations are carried out implicitly such
that the inertia matrix cannot be retrieved directly. It is
shown in [16] that the inertia matrix A(q) can be calculated
from the model of the inverse dynamics by assigning a unit
value to one element of the joints’ accelerations vector and
assigning a zero value to the remaining elements, including
the joints’ velocities and the gravity term. In such scenario the
associated column of the inertia matrix can be calculated, and
by iterating the procedure through all of the elements of the
joints’ acceleration vector the inertia matrix is achieved. This
method was later re-named composite-rigid-body algorithm
(CRBA), by Featherstone [17]. Using CRBA to calculate
the inertia matrix proved to be computationally efficient,
especially if the calculations are performed in links-attached
local frames. Computer code of the algorithm based on 6D or
spatial vectors algebra is available in [17]. A comprehensive
review of spatial vectors and Plücker basis is in [18] and in
chapter 2 of [19].

In this study we propose GDAHJ as a method to calculate
JSIM for articulated bodies with relatively high number of
DOF, GDAHJ achieves better efficiency over state-of-the-
art method, the famous CRBA. This increase in efficiency

Figure 1. Inertial moment µCij and linear acceleration p̈Cij of centre of
mass of link i transferred by frame j

is achieved through minimizing the number of operations
that have O(n2) computational complexity. In GDAHJ the
number of computations associated with the quadratic terms
are reduced to the minimum value possible, from 16n2 in the
case of CRBA to 5.5n2 for GDAHJ.

II. THEORY AND PRINCIPALS

The proposed algorithm builds on what we call the frame
injection effect, Figure 1, in which each frame j attached
to joint j will transfer to link i a linear acceleration into
its centre of mass and an inertial moment around its centre
of mass. In this study we notate them by p̈Cij and µCij ,
respectively. This transfer is due to the rotational effect
of joint j around its axes of rotation, or the z axis of
frame j according to modified Denavit Hartenberg (MDH)
designation. This cause and effect relationship between frame
j and link i is referred to by the subscript ij in p̈Cij and
µCij , while the C in the subscript is used to refer to the
mass centre of link i. The same subscript notation will hold
throughout this study for denoting frame-link interaction of
cause-and-effect unless stated otherwise.

A. Link’s acceleration due to the single-frame rotation

Each frame j transfers to link i three acceleration vectors
tangential acceleration, normal acceleration and Coriolis ac-
celeration. The first of which is shown in Figure 2, it is due
to the angular acceleration of frame j:

p̈τCij = εj × pCij (4)

Where p̈τCij is the tangential acceleration of the centre of
mass of link i due to the rotation of frame j, the symbol ×
is used to denote the cross product (the same notation of the
cross product will hold throughout this study) and pCij is
the vector connecting the origin of frame j and the centre of
mass of link i. εj is the angular acceleration of link j:



Figure 2. Tangential acceleration of centre of mass of link i transferred by
frame j

εj = q̈jkj (5)

Where kj is the unit vector associated with the z axis of
joint j, and q̈j is the angular acceleration of that joint.

Concerning the normal acceleration, each frame j transfers
to link i a normal acceleration due to its rotation, Figure 2:

p̈nCij = ωj × (ωj × pCij) (6)

Where ωj is the angular velocity of link j due to the
rotational effect of joint j. It is given by:

ωj = q̇jkj (7)

We can rewrite the equation of the normal acceleration
transferred to link i due to frame j by:

p̈nCij = kj × (kj × pCij)q̇2j (8)

The third acceleration transferred is Coriolis acceleration,
Figure 2, in which each frame j transfers to link i Coriolis
acceleration p̈corCij :

p̈corCij = 2ωj × vrCij (9)

Where ωj is as described previously in equation (7), and vrCij
is the velocity transferred to the centre of mass of link i from
frames j+1 up to frame i. Here, the r in the superscript is to
denote that this is a relative velocity, and C in the subscript
is used to refer to the mass centre of link i, so that vrCij can
be calculated from:

vrCij =

i∑
k=j+1

ωk × pCik (10)

The total linear acceleration transferred by frame j to the
centre of mass of link i is given by:

p̈Cij = p̈
τ
Cij + p̈

n
Cij + p̈

cor
Cij (11)

B. Link’s inertial moment due to single-frame effect

It can be proved that each frame j will transfer to link
i three inertial moments, the first of the inertial moments
transferred is due to angular acceleration of frame j and it
is given by:

µτCij = (RiI
i
iR

T
i )εj (12)

While µτCij is the moment transferred by frame j into link
i due to frame’s j angular acceleration, Ri is the rotation
matrix of frame i in relation to base frame, and Iii is 3 × 3
inertial tensor of link i around its centre of mass represented
in frame i.

The second inertial moment transferred from frame j to
link i is due to centrifugal effect:

µn
Cij =

1

2
(Liωj)× ωj (13)

Where Li is a 3× 3 matrix that is calculated from:

Li = Ri(tr(I
i
i)13 − 2Iii)R

T
i (14)

The subscript in Li is to notate that the matrix calculated
pertains to link i. tr(Iii) is the trace of the inertial tensor and
13 is the identity matrix.

The third inertial moment transferred from frame j to link
i is due to Coriolis effect:

µcorCij = (Liωj)× ωrij (15)

Where ωrij can be calculated from:

ωrij =

i∑
k=j+1

ωk (16)

Thus, the total inertial moment transferred to link i around
its centre of mass due to the rotational effect of frames j is
given by:

µCij = µ
τ
Cij + µ

n
Cij + µ

cor
Cij (17)

III. JOINT SPACE INERTIA MATRIX FOR HIGH DOF
(JSIMHJ)

The GDAHJ algorithm calculates the joint space inertia
matrix for robots with high DOF quite efficiently, this in-
crease in efficiency is achieved through minimizing the num-
ber of operations that has O(n2) computational complexity
to a minimum, according to our knowledge GDAHJ is the
most efficient method for high DOF robots ever proposed till
now.

Starting from the basic interpretation of JSIM columns,
the mathematical equations of GDAHJ algorithm can be
deduced. Where as described in section 3.2 of [1], each



Figure 3. Inertial forces and moments acting on link i due to angular
acceleration of joint j.

column j of the JSIM can be interpreted as: the torques
acting on the various joints of the robot, due to the unit
acceleration of joint j, giving that the angular velocities of
all of the joints are equal to zero. In Figure 3 we show the
free body diagram of one link of the robot, with the inertial
moments and inertial forces acting on it.

Following the previous definition of column j of JSIM,
we can calculate that column as the following: (1) choose a
joint j, and (2) write the balance equation of a link i from
the robot. By referring to Figure 3, the balance equation of
link i:

µi,j = µi+1,j + (RiI
i
iR

T
i )kj q̈j +mip̂Cii(q̈jkj × pCij)+

l̂i

n∑
k=i+1

mk(q̈jkj × pCkj) (18)

Where µi,j is the total moment acting on joint i due to
the acceleration of joint j only. li is the vector connecting
the origin of frame i to the proceeding frame’s origin, the
little hat notation above the vector is used to denote the
skew symmetric operator associated with that vector. From
the definition given in the previous section of column i, we
substitute q̈j by its value q̈j = 1. Then the modified balance
equation is:

µi,j = µi+1,j + (RiI
i
iR

T
i )kj +mip̂Cii(kj × pCij)

+l̂i

n∑
k=i+1

mk(kj × pCkj) (19)

While:

pCij = pCi − pj (20)

And:

pCkj = pCk − pj (21)

We substitute the values of pCij and pCkj into (19), and we
fix:

µi,j = µi+1,j

+

(
RiI

i
iR

T
i −mip̂Ciip̂Ci − l̂i

(
n∑

k=i+1

mkp̂Ck

))
kj

−

(
mipCii + (

n∑
k=i+1

mk)li

)
× (kj × pj) (22)

We define the vector ηi by:

ηi = mipCii + (

n∑
k=i+1

mk)li (23)

And we define the matrix operator κi by:

κi = −mip̂Ciip̂Ci − l̂i

(
n∑

k=i+1

mkp̂Ck

)
(24)

Then we write:

µi,j = µi+1,j+
(
RiI

i
iR

T
i + κi

)
kj−(ηi)×(kj×pj) (25)

By performing a recursion on previous equation from link n
to link i, and noticing that µn+1,j = 0 we get:

µi,j =

(
n∑
k=i

(
RkI

k
kR

T
k + κk

))
kj−

(
n∑
k=i

ηk

)
× (kj×pj)

(26)
To hide the complexity in the previous equation, we denote
the terms between parenthesis by:

bi =

(
n∑
k=i

ηk

)
(27)

And

Di =

n∑
k=i

(
RkI

k
kR

T
k + κk

)
(28)

Substituting (27) and (28) in (26) yields:

µi,j = Dikj − b̂i(kj × pj) (29)

For calculating the (i, j) entry of JSIM, Ai,j , we project µi,j
on the z axes of joint i, or in other words we multiply (29)
by the unit vector kTi :

Ai,j = k
T
i µi,j = k

T
i Dikj − kTi b̂i(kj × pj) (30)

By noticing that each entry i, j of the JSIM, or kTi µi,j is a
scalar, then we can transpose the previous equation without
loss of generality:

Ai,j = k
T
j

(
DT
i ki
)
−
(
kj × pj

)T (
b̂
T

i ki

)
= kTj

(
DT
i ki
)
+
(
kj × pj

)T (
b̂iki

)
(31)

In such a way we have decoupled the dependency between
indexes i and j. Moreover, we limited the cross-coupling



Table I
OPERATION COUNT FOR PROPOSED METHOD AND OTHER METHODS, m STANDS FOR MULTIPLICATION AND a FOR ADDITION.

Method Quantity Cost Reference
GDAHJ JSIM (3n2 + 88n− 3)m+ (2.5n2 + 95.5n− 18)a Proposed
CRBA JSIM (10n2 + 22n− 32)m+ (6n2 + 37n− 43)a [20] and [19]

Symbolic-
Numeric

JSIM-Coriolis ( 3
2
n3+ 35

2
n2+9n−16)m+( 7

6
n3+ 23

2
n2+ 64

3
n−28)a [21]

RNEA† Inverse dynamics (93n− 108)m+ (81n− 100)a [19] Table 10.1
† Recursive Newton-Euler Algorithm (RNEA) is designed for calculating the inverse dynamics. Nevertheless, if

the algorithm is invoked by passing q̇ = 0, by ignoring the gravity vector, and by passing an angular
acceleration vector with all elements equal to zero except for an element q̈j = 1, then the corresponding j
column of JSIM is produced. In such a case, by invoking this algorithm n times, all columns of JSIM are

calculated, and the resulting computational cost is (93n2 − x1n)m+ (81n2 − x2n)a,
which is very expensive in the O(n2) part of the algorithm.

Algorithm 1 Calculating joint space inertia matrix entries,
algorithm is based on eq (31).

For i = 1 : n

For j = 1 : i

% calculating Ai,j will require two vector inner products and one
% scalar addition with total cost (3n2 + 3n)m+ (2.5n2 + 2.5n)a

Ai,j = kT
j di + tTj yi

Aj ,i = Ai,j

End

End
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Figure 4. Execution time results for GDAHJ vs CRBA.

interaction between joint j and bodies i into a minimum.
The previous equation states that the effect of acceleration of
each joint j is limited to the terms kTj , and tj =

(
kj × pj

)
.

The effect of the articulated bodies from link n to link i is
manifested by the terms

(
DT
i ki
)

and
(
b̂
T

i ki

)
. The terms

di =
(
DT
i ki
)

and yi =
(
b̂
T

i ki

)
can be calculated with

an O(n) algorithm using multiple recursions, while the mass
matrix entries can be calculated with minimum quadratic cost
using the nested loop in Algorithm 1.

The nested loop in Algorithm 1 has the minimal quadratic
cost. This cost results from two vector-inner products and one
scalar addition, with a cost (3n2 +3n)m+(2.5n2 +2.5n)a,
where m stands for multiplication and a stands for addition.
Thus, the O(n2) computational cost is optimized.

IV. IMPLEMENTATION AND RESULTS

To prove the validity of the proposed method, GDAHJ,
and to assess its execution-time performance, a comparison
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Figure 5. Relative error in computation for results achieved using GDAHJ
and CRBA.

with well established algorithms was performed.
Table I shows the computational complexity of the pro-

posed algorithm against state-of-the-art CRBA algorithm,
measured in the number of floating point operations (addi-
tions and multiplications) as function of n, the number of
DOF of the robot. The operation count for CRBA reported in
Table I pertains to the most efficient version of this algorithm
[19]. The results reported in Table I for GDAHJ do not include
the number of operations required to perform the direct
kinematics of O(n), since that most of robotics operations
require direct kinematics calculation, otherwise the cost of
the direct kinematics can be added. It can be inferred that
GDAHJ performs better than CRBA for articulated bodies
(serially connected) that have more than 13 DOF.

To confirm the theoretical results, both algorithms CRBA
and GDAHJ were implemented in Matlab, and a comparison
in terms of execution time between the two algorithms was
performed. Numerical tests were carried out by considering
a manipulator in which the mass of each link was generated
randomly in the range [1,10] kg. The inertial tensors of
each link were generated as random positive definite mat-
rix in which each element of the matrix is in the range
[1,10] kg.m2. Denavit-Hartenberg parameters of each link
were generated randomly as well as the pose of the robot
(joint angles). Afterwards, the JSIM of the manipulator was
calculated twice, once using CRBA method and another
time using GDAHJ method. Figure 4 shows the results in



terms of execution time and Figure 5 shows the results in
terms of numerical error of the calculation between the two
methods. From the figures we notice that GDAHJ performs
better than CRBA in terms of execution time for high DOF
robots (more than 13 DOF). The maximum ratio of time
of execution CRBA/GDAHJ acheived is 2.2, which is less
than the theoretical limit 16/5.5. Again, the time required for
performing the direct kinematics for GDAHJ is not taken into
consideration in the plots.

A metric-value was defined to measure the relative error,
calculated by the overall-sum of the absolute values of the
differences taken on all the cells of the mass matrix calculated
by CRBA against its counterpart calculated by GDAHJ.
Then, this sum is divided by the maximum absolute matrix-
element value from the calculated JSIM:

e =
sum(sum(abs(AGDAHJ−ACRBA)))

max(max(abs((AGDAHJ+ACRBA)/2)))
(32)

Where the implementation sum(sum(arg)) returns the sum
of all elements of the argument matrix (arg), abs(arg) is
a function that returns a matrix where all its elements have
the absolute value of their counterpart of the argument matrix
argument matrix (arg). From the graph in Figure 5 we notice
that the error is small and can be attributed to numerical
rounding errors.

V. CONCLUSION

In this study we proposed GDAHJ, a novel algorithm for
efficient calculation of JSIM for serially linked robots, the al-
gorithm achieves better efficiency over state-of-the-art when
calculating JSIM for hyper-joint manipulators. This increase
in efficiency is achieved through minimizing the number of
operations associated with the O(n2). In such a case, the
number of computations associated with the quadratic terms
are reduced to the minimum value possible, from (16n2) in
the case of CRBA to (5.5n2) for the proposed algorithm. At
the end comparison between the proposed algorithm against
state of the art CRBA was made, the performance of the
proposed algorithm was discussed in operation count section
of this study. On a theoretical level, this study demonstrates
the minimum bound for the O(n2) operations required for
calculating JSIM. Future work will focus on reducing the
number of operations associated with O(n) of the algorithm.
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