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Abstract—Object recognition has attracted increasing attention
of researchers due to its numerous applications. For instance, it
enables robots to carry out tasks like searching for an object
in an unstructured environment or retrieving a tool for a
human co-worker. In this study, we present a new technique for
unsupervised feature extraction from red, green, blue, plus depth
(RGB-D) data, which is then combined with several classifiers
to perform object recognition. Specifically, our architecture
segments all objects in a table top scene through an unsupervised
clustering technique. It focuses separately on each object to
extract both shape and visual features. We conduct experiments
on a subset of 20 objects selected from the YCB object and model
set and evaluate the performance of several classifiers. The most
effective one achieves an accuracy of 99.7% when trained and
tested on samples acquired with the same conditions (equipment
and environment). Results degrade when the system is trained
with YCB data and tested with data acquired from a Kinect
sensor in online laboratorial implementation.

Index Terms—object recognition; shape features; RGB-D;
lightweight algorithm; robotics

I. INTRODUCTION

As the presence of collaborative robots in highly dynamic
workspaces becomes more prevalent, autonomy and advanced
cognitive reasoning are increasingly a demand for these robots.
To achieve this end, the robots will need to be aware of
many physical attributes of the world, just as the humans
do [18]. For instance, humans see novel objects and are
instantly capable of recognizing them. In other words, they
segment a scene into parts, describe what those parts are,
and distinguish visually similar objects in real time. Similarly,
recognizing object instances and categories is also a crucial
ability for autonomous and collaborative robots to understand
and interact with the physical world. Object recognition and
detection has thus been a major focus of research in computer
vision, machine learning and robotics communities [6], [9].

Even though object recognition is a fundamental problem
for several scientific communities, it remains challenging
since objects can exhibit large variations in appearance due
to changing viewpoints, deformations, scales, and lighting
conditions. Hence, numerous features and approaches have
been developed and applied to this problem, contributing to
important breakthroughs in the state-of-the-art.

Fig. 1: Overview of the proposed approach.

Over the last years, a new generation of sensing tech-
nologies capable of providing RGB-D images have emerged.
Compared to red, green, and blue (RGB) data, which provide
objects’ appearance information, depth data contain additional
cues about its geometric shape. Besides, depth data are invari-
ant to lighting and color variations. Nowadays, RGB-D sensors
are relatively inexpensive, having favored the availability of
large image datasets [5], [9], [19] and the development of
features for color and depth channels. Hence, they represent an
opportunity to improve RGB-D data-based object recognition,
which is at the core of many robotic applications. Such ability
enables robots to make informed decisions in achieving tasks
like retrieving an object from a novel environment for a
human.

This study introduces a framework for unsupervised feature
extraction from RGB-D data. A major objective is related to
the ability to acquire RGB-D features that serve as input to
traditional classifiers and which compete with deep learning
in accuracy, training time and not requiring large datasets.
Such ability may facilitate the online implementation of ob-
ject recognition in the most diverse domains. Our approach
segments objects previously placed above a table and extracts
both shape and visual features from each one. Specifically,
the method fits primitive geometric shapes (cylinder, sphere,



and rectangular prism) to each object and uses the best model
to estimate its volume. Besides, k-means clustering draws
upon RGB data to reveal main colors of the objects. These
representations and the corresponding object class are used
as inputs to different classifiers. We validate our approach on
the Yale-Carnegie Mellon University (CMU)-Berkeley (YCB)
object and model set [5]. The key contributions of this study
can thus be summarized as follows:

• Object segmentation and feature extraction which can
accurately detect and recognize several objects simulta-
neously;

• Robust shape and visual features able to deal with un-
structured environments and lack of knowledge about
background and object pose;

• We evaluate our approach on a subset of 20 objects
selected from the YCB object and model set;

• Source code is available online at https://github.com/
AndreBrasUC/Object_Recognition_From_RGBD_Data.

II. RELATED WORK

Since our work is related to a large body of studies on
feature extraction and object recognition from RGB-D data,
we will highlight a few connections and differences between
our approach and the most recent literature. Early approaches
for object recognition in three-dimensional (3D) environments
focused on developing handcrafted features from the point
cloud space or the associated RGB-D data. On the one hand,
the 3D point cloud representation allowed the extraction of
local features, such as the Signature of Histogram of Orienta-
tions [20], as well as global features, such as the Viewpoint
Feature Histogram [17]. On the other hand, many feature
descriptors have been applied directly on RGB-D data, namely
the Scale Invariant Feature Transform (SIFT) [9], [13], spin
images [7], [9], Speeded Up Robust Features (SURF) [2],
Histograms of Oriented Gradients (HOG), and Bag-of-Words
(BoW). Lai et al. [9] presented the RGB-D Object Dataset and
an object recognition and detection framework. Their object
recognition approach used handcrafted descriptors, such as
spin images [7] and SIFT [13], to retrieve shape and visual
representations, respectively. Afterwards, they evaluated the
performance of 3 classifiers considering shape features, visual
features and both shape and visual features. They concluded
that combining color and depth information improves the
results. In our study, we also split shape and visual features
to evidence the significance of each subset and the benefits of
using them together. Lai et al. [10] applied the same set of
shape and visual features to propose and evaluate the Instance
Distance Learning (IDL) classifier. Such technique resembles
the nearest neighbor approach, which labels an incoming test
image using the label of the nearest instance, but it exhibits
two key differences. Firstly, each novel view of an object is
simultaneously compared to all views of a previous object,
resulting in significant computational cost savings. Secondly,
IDL classifier replaces a regular distance function between
views by a learned instance distance function, which allows

the classifier to assign different weights to each feature and
for each view.

A few years ago, several research groups started proposing
unsupervised feature learning algorithms to RGB-D data-
based object recognition, opening a new perspective of feature
extraction techniques [2], [3]. Blum et al. [2] proposed the
convolutional k-means descriptor, which uses RGB-D images
and learns local features from the neighborhood of interest
points previously detected by the SURF descriptor. Our study
also uses k-means descriptor, yet with a few different details.
Specifically, we apply k-means descriptor on RGB data to get
the main colors of each object. Bo et al. [3] introduced the
hierarchical matching pursuit (HMP) method, which can build
features in an unsupervised fashion from RGB-D images.

Even though unsupervised feature learning techniques have
shown good performance on object recognition problems,
they are still based on handcrafted features. Such approaches
conceal at least two basic limitations. On the one hand, during
the learning process, these features usually only capture a
small set of recognition cues from raw data, ignoring other
equally useful information. On the other hand, handcrafted
features must be redesigned for new data types, making
object recognition systems heavily dependent on expert expe-
rience [3]. Therefore, the emergence of effective and efficient
learning algorithms able to learn robust representations from
raw data was a natural evolution. Accordingly, deep learning
methods are representation learning methods which allow a
machine to be fed with raw data and automatically discover
representations needed for detection or classification tasks
[12]. The learned features have shown valuable results in
a myriad of domains, being many times better than those
achieved with engineered descriptors [1].

Convolutional Neural Networks (CNNs) [11] are examples
of deep networks used to learn latent and complex features
directly from data. The usage of CNNs in [8] to almost
halve the error rate for object recognition was a breakthrough
that triggered the application of deep learning by multiple
communities to other object recognition problems [4], [6],
[14]–[16]. Redmon and Angelova [16] adapted the widely
used CNN proposed in [8] and introduced an approach for
simultaneous object recognition and robotic grasp detection
from RGB-D images. Motivated by the advances of machine
learning and computer vision communities, Eitel et al. [6]
proposed a novel RGB-D architecture for object recognition.
Specifically, they applied 2 CNNs operating separately on
color and depth modalities, being then combined by a late
fusion approach.

While applying pre-trained networks for object recognition
from RGB data is straightforward, using such networks for
processing depth data is not. Therefore, researchers have
proposed depth data encoding methods to enable the reuse of
CNNs previously trained on RGB data. Most of the multi-
stream approaches have combined RGB data and a single
depth data encoding method. However, Rahman et al. [15]
presented a novel multimodal architecture for object recogni-
tion which encodes depth data with 3D surface normals and



jet colormap, splitting thus depth data into 2 streams. Then,
they combined both depth streams with RGB data to build a
deep network composed of 3 branches.

An unprecedented and attractive approach for object recog-
nition was proposed in [4]. The authors developed a region
proposal method able to locate objects in a 3D point cloud
representation through an unsupervised clustering technique.
From the clusters, they computed the 3D position of each
object and derived the coordinates of a bounding box, which
was then translated into the corresponding position in RGB
space. Finally, the defined patches were fed into a CNN
for classification. In our work, we also use an unsupervised
clustering technique. However, they segmented objects using
a Euclidean clustering algorithm, while we consider the total
number of points and its density in each cluster. Furthermore,
we learn features directly from these cluster and use them in
a feedforward ANN, while they use a CNN with RGB data.

III. UNSUPERVISED FEATURE EXTRACTION

We introduce a novel unsupervised feature extraction algo-
rithm which uses RGB-D data to distinguish between objects.
According to Fig. 1, we use a Microsoft Kinect sensor to
acquire an RGB-D image of the table top scene and the
corresponding point cloud. These data are used for testing
(online implementation), since the training data is obtained
from the YCB dataset. In this study, we focus only on the
object recognition problem for table top settings as they are
common environments. Afterwards, we take advantage of
the previous knowledge about the table position to trim the
background and obtain a point cloud composed only by the
table and the objects. The point cloud is then rotated so that
the table is parallel to a cartesian plane, the XOZ plane,
which eases the removal of table points. Object segmentation
is completed by isolating each object (cluster) in its own point
cloud. Then, for each object, we examine its geometry and
color to extract shape and visual features, respectively.

A. Point Cloud Processing and Object Segmentation

The proposed segmentation method, Algorithm 1, outputs a
set of clusters in which each one confines an object in the table
top scene. These clusters serve as inputs to feature extraction.

The inputs to the algorithm are a point cloud, C, and a
bounding box, b. A point cloud is a m-by-n-by-3 matrix,
where m and n are defined by the Microsoft Kinect’s RGB
sensor resolution. The bounding box is the mathematical
expression of the knowledge about the target 3D space. So, b
is a row vector which includes the center position and the
dimensions of a rectangular prism. Even though Microsoft
Kinect is a good RGB-D camera, it is still affected by noise
and missing depth data, mainly due to reflective properties
of materials. Therefore, we remove invalid points (Line 2).
After such operation, the point cloud becomes a p-by-3 matrix,
where p is the total number of valid points. In this moment,
we downsample the point cloud to ensure real-time processing
and sufficient coverage (Line 3). A proper sampling parameter,
α, which represents the remaining portion of point cloud, is

equal to 0.60. Subsequently, points’ position is evaluated and
only those belonging to the rectangular prism b are stored,
which allows us to reach a much smaller point cloud, D (Line
4). This point cloud is composed only by the table and the
objects. Since Microsoft Kinect sensor is not aligned with the
horizontal plane, the table shows up in the point cloud in a
diagonal position. However, as our setting is static, this angle
can be roughly measured. The further step is thus rotating
the point cloud D to obtain another point cloud, E, where
the table plane is almost aligned with XOZ plane (Line 5).
Accordingly, R is a rotation matrix describing a rotation of
30º around the x axis. Then, we use M-estimator SAmple
Consensus (MSAC), which is a variant of the RANdom
SAmple Consensus (RANSAC) algorithm, to fit a plane to
the table. Tinliers includes all points whose distance to the
computed plane is lower than a predefined value. The y axis
is then aligned with the normal vector, n, of the plane and
we get a new point cloud, F, where the table is finally
parallel to XOZ plane (Lines 6-8). Afterwards, we plot a
histogram which counts the number of points along y axis.
Since the table is the biggest provider of points, we can
find the maximum value, add an offset, and remove all table
points (Line 9). The point cloud G contains only the objects
and a few outliers, which we eliminate through a pair of
equal denoise operations (Lines 10-11). A given point is an
outlier if the average distance to its β-nearest neighbors is
above a specified threshold. Decreasing the number of nearest
neighbors makes the filter more sensitive to noise and relevant
data can be removed too. Increasing this value increases the
number of computations. We are considering the 75 nearest
neighbors as this value has given positive results. Furthermore,
the threshold is one standard deviation above the mean of the
average distance to β-nearest neighbors of all points. Finally,
we split XOZ plane in small square cells, count the points
in each cell, and look for non-empty adjacent cells, which
represent a segmented object (Line 12).

Algorithm 1 Point Cloud Processing and Object Segmentation
1: Given point cloud C, bounding box b
2: C ← remove invalid points (C)
3: C ← downsample (C, α)
4: D ← C ∩ b
5: E ← R D
6: Tinliers ← MSAC (E)
7: n ← get normal vector (Tinliers)
8: F ← rotate E so that y axis is aligned with n
9: G ← remove table plane (F)

10: G ← denoise (G, β)
11: G ← denoise (G, β)
12: O ← cluster (G)
13: return O

B. Feature Extraction (shape and visual features)

Feature extraction (shape and visual features) is individually
applied to each object previously segmented.



Fig. 2: Network architecture used for object classification. The
input layer has 15 units, as well as both hidden layers. The
output layer has 20 units.

We use MSAC algorithm to fit cylinders and spheres to
each object. Then, we compare the number of inliers and the
total number of points to evaluate the quality of each model.
A given point is an inlier if the distance to the model is
lower than a specified threshold. Furthermore, we also adjust
a rectangular prism to the point cloud. Since MSAC algorithm
can not do it directly, we first fit the frontal and top planes.
If the number of inliers of these planes is considerable when
faced to the total number of points, we finish the prism by
modelling the other 4 planes. After we have adjusted these
3 primitive geometric shapes, we use the model with highest
quality to compute object’s volume. Therefore, we compute
3 shape features, namely (1) the primitive geometric shape
that best fits the object, (2) the corresponding quality, and (3)
the object’s volume. However, when all models are poor, we
assume that no geometric shape properly describes the model
and point cloud’s volume is used instead of object’s volume.

Since RGB-D data is available (from the YCB and Mi-
crosoft Kinect), we can build point clouds composed of
colored points and use all values of RGB channels to obtain
visual features of objects in the table top scene. On one hand,
we apply k-means clustering with k equal to 1 to obtain
the centroid of all points in RGB space. This centroid is
represented by 3 values, 1 for each channel, and expresses
the main color of the point cloud. On the other hand, we use
k-means clustering with k equal to 3 to retrieve 3 predominant
colors. Altogether, we extract 12 visual features (1 main color
+ 3 secondary colors) from each object.

C. Classification

Feature vectors are taken as input by a feedforward ANN,
whose architecture is shown in Fig. 2. Each feature vector
includes 3 shape features and 12 visual features, and thus the
input layer has 15 units. The network comprises 2 hidden
layers and both contain 15 units. Furthermore, both layers
apply sigmoid as activation function. The output layer has 20
units, which is the number of classes, and uses the softmax
activation function. Finally, this network is optimized with
the Scaled Conjugate Gradient (SCG). The other classifiers
are a decision tree with 100 leaf nodes, linear, quadratic, and
cubic Support Vector Machines (SVM), and also 2 different
k-nearest neighbors (k-NN) algorithms.

IV. EXPERIMENTS AND RESULTS

A. YCB object and model set

To illustrate the effectiveness of our approach, we conduct
our experiments on the YCB object and model set [5]. Such

Fig. 3: Subset of 20 objects selected from the YCB object
and model set. From back to front and left to right: cracker
box, chips can, wood block, bleach cleanser, pitcher, potted
meat can, master chef can, sugar box, mustard bottle, bowl,
gelatin box, tomato soup can, tennis ball, softball, baseball,
plum, peach, apple, orange, and lemon.

dataset has been made available to facilitate benchmarking
in robotic manipulation research. YCB object and model set
includes 77 different objects divided into 5 categories, namely
food items, kitchen items, tool items, shape items, and task
items. From the dataset we selected a subset of 20 objects,
Fig. 3, based on a survey of the most common items used
in literature considering a variety of shapes, sizes, textures,
weights, rigidities, transparencies, as well as the difficulty
of grasping and manipulating them. The associated database
provides RGB-D images, physical properties, and geometric
models of the objects. Additionally, the scoring schemes for
the quantification of performance are also available. These
protocols enable the community to compare approaches and
evolve standardized benchmarking tests and metrics.

Visual data were collected with the scanning rig used to
build BigBIRD dataset [19]. The rig encompasses 5 RGB-
D sensors and 5 high-resolution RGB cameras arranged in
a quarter-circular arc. Each object is placed on a computer-
controlled turntable, which is rotated by 3º at a time, yielding
120 turntable orientations. Therefore, the setup yields 600
RGB-D images and 600 high-quality RGB images for each
object, being each one followed by the corresponding segmen-
tation mask. However, we only use data from the second and
third cameras, when counting from the horizontal, which gives
us 240 RGB-D images and the same number of high-quality
RGB images of each object.

B. Evaluation

In SCENARIO 1 the system is trained and tested with YCB
data. In SCENARIO 2 the system is trained with YCB data
and tested with data acquired from a Kinect sensor in online
laboratorial implementation. Fig. 4 shows an example of the
extracted shape features for the orange and visual features for
the cracker box. In Table I, we present the classification results



TABLE I: Accuracy from 7 different classifiers considering
shape features, visual features, and shape + visual features.

Classifier Shape
Features

Visual
Features

Shape+visual
Features

Proposed ANN 56.1 98.5 99.7
Decision Tree 65.0 92.3 96.4
Linear SVM 43.6 96.5 98.2

Quadratic SVM 48.5 99.5 99.3
Cubic SVM 19.1 99.4 99.1

1-NN 59.7 99.3 98.5
5-NN 64.0 97.8 96.6

Fig. 4: Example of shape and visual features captured for 2
different objects (orange and cracker box).

achieved having different features as input. When we trained
the ANN, we randomly split the total number of samples of
each object class into training (70%), validation (15%), and
test (15%) samples. All the other classifiers were trained with
a 5-fold cross validation technique to prevent overfitting.

We trained several architectures for the feedforward ANN,
namely networks with different number of hidden layers and
different number of units in these layers. We realized that
networks with 2 hidden layers behave slightly better than
networks with a single hidden layer. At the end, the strategy
detailed in Section III-C achieves a maximum accuracy of
99.7% on test samples. We used the same architecture with
only shape features and only visual features, which enabled us
to achieve accuracies of 56.1% and 98.5%, respectively. So, we
prove that more than a half of the total test samples can be well
classified with only 3 shape features. This is a promising result
as several objects have similar shape and size, such as the
baseball, the tennis ball, and all the plastic fruits. Furthermore,
visual features alone have shown positive performance, even
considering objects with similar colors, such as the chips can
and the cracker box, or the baseball and the softball.

Fig. 5 shows the confusion matrix outputted by the feed-
forward ANN when we used it to perform object recognition
on the 720 test samples with both shape and visual features
(SCENARIO 1). This figure reveals only 2 misclassifications.
Firstly, the algorithm predicted the sugar box instead of the
potted meat can, which can be explained by the presence of the
yellow and blue colors on both objects. Secondly, the bleach
cleanser was also confounded with the sugar box because
white, yellow and blue are common colors.

After we have trained and evaluated all the classifiers on
visual data provided with the dataset, we acquired 10 RGB-

Fig. 5: Confusion matrix achieved by the feedforward ANN
for 720 RGB-D images provided along with the dataset
(SCENARIO 1).

D images of each object in Fig. 3 with a Kinect sensor
(SCENARIO 2). Then, we used the previously trained feed-
forward ANN to predict a label for these 200 RGB-D images.
We achieved an accuracy of 34.0% and the corresponding
confusion matrix is in Fig. 6. When we used only shape
features and only visual features, we achieved accuracies of
19.5% and 22.0%, respectively. Even though these results
are divergent from those presented above, there is a simple
explanation. Visual data provided with the dataset were not
acquired with a Kinect sensor and we can confirm that visual
features extracted from the available visual data are very
different from those computed from the RGB images acquired
with the Kinect sensor. This fact explains, for instance, the
confusion between the plum (purple) and the apple (red), or
between the lemon (yellow) and the tennis ball (green). It
is expected that the algorithm works well when trained and
evaluated on samples acquired with the same equipment.

The experiments described above were carried out with
a single object placed on the table. However, the proposed
framework can deal with multiple objects. Accordingly, in
Fig. 7, we show 4 well-segmented objects from a single point
cloud.

V. CONCLUSION AND FUTURE WORK

In this study we presented and demonstrated a simple, and
reliable object recognition framework. It can detect objects in
an unstructured environment, extract shape and visual features
from each object, and output the corresponding label. We
proved that this technique can achieve an accuracy of 99.7%
when it is trained and tested on samples acquired with the
same camera. The system demonstrated reliability to segment



Fig. 6: Confusion matrix achieved by the feedforward ANN
for 200 RGB-D images acquired with the Kinect sensor
(SCENARIO 2).

Fig. 7: Object segmentation. The point cloud on the left side
shows the table and the objects after rotation. On the right
side, all objects were already segmented and they can serve
as inputs to feature extraction.

different objects in given scene. In future work, we will expand
our results by providing a comparative analysis with deep
learning.
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