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Abstract. This study introduces the Geometric Dynamics Algorithm
(GDA) for representing the dynamics of serially linked robots. GDA is
non-symbolic, preserves simple formulation, and is convenient for nu-
merical implementation. GDA-based algorithms are deduced for e�cient
calculation of various dynamic quantities including (1) joint space inertia
matrix (JSIM) (2) Coriolis matrix (3) centrifugal matrix (4) and the time
derivative of JSIM. The proposed algorithms were analyzed in terms of
their computational complexity. Results compare favorably with other
methods.

Keywords: Dynamics · serially linked robots · geometric dynamic al-
gorithm.

1 Introduction

Inverse dynamics equation of robots is a complex multi-variable function of its
joints torques velocities accelerations and positions. The joint space formulation
of this equation is:

τ = A(q)q̈ +B(q, q̇)q̇ + g (1)

Where τ is the vector of robot's joints torques, q is the vector of joints positions,
q̇ is the vector of joints angular velocities, q̈ is the vector of joints angular
accelerations, A(q) is the joint space inertia matrix of the robot, B(q, q̇) is the
joint space Coriolis matrix of the robot, and g is the vector of joint's torques
due to gravity.

One of the earliest methods used to deduce the equations of robot dynamics is
based on Lagrangian formulation. This method is well described in the literature
[1]. However, the method requires partial di�erentiation, usually done o�-line on
a computer using a symbolic math software [2]. In addition, for robots with high
degrees of freedom (high DOF) the generated equations are enormous resulting
in slow execution [3]. The formulation of robot-speci�c dynamics using Kane's
equations is in [4], the authors demonstrated the methodology for deducing dy-
namics equations of a robot by hand. Newton-Euler recursive method is de-
scribed in [5]. It includes forward propagation for calculating links accelerations
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followed by a backward propagation for calculating joints torques. The method
is very e�cient for calculating the torques vector. However, the calculations are
carried out implicitly such that the dynamic matrices (inertia, Coriolis, centrifu-
gal) cannot be retrieved directly. Composite Rigid Body Algorithm (CRBA) [6]
is an e�cient method for calculating the mass matrix of robots. Though, it can
not be used for calculating other dynamic matrices. Calculating Coriolis matrix
is important for control applications, for example in passivity-based control as
noted in [7]. In [8], the Coriolis matrix, C(q, q̇), according to the notation of
that paper, was used for calculating collision detection signal. In that study the
Coriolis matrix transpose appears in the term CT(q, q̇)q̇ of equation (22), as
such Coriolis matrix has to be calculated explicitly in real time for performing
real time reaction control. Coriolis matrix can be deduced in a symbolic form
by utilizing Euler-Lagrange formulation through partial di�erentiation and by
utilizing Christo�el symbol of the �rst kind.

In this study we propose a novel method for representing the dynamics of
robots. In our method, the dynamics quantities are calculated as contributions
of frames' e�ects in what we call the frame injection e�ect. In such a case,
the dynamics of each link is described using a separate equation linear in q̈,
expressed in a mathematical formulation resembling the manipulator's inverse
dynamics equation. This facilitates (as shown later) the process of calculating:
joint space inertia matrix (JSIM), Coriolis matrix, centrifugal matrix, and the
time derivative of JSIM, (TD-JSIM), for serially linked robots. Accompanying
code for various algorithms described in this article is available publicly in the
repository [9].

2 Theory and principals

The proposed algorithm depends on what we call the frame injection e�ect, in-
troduced in our previous work [10]. Each frame j attached to joint j transfers to
link i a linear acceleration into its center of mass p̈Cij and an inertial moment
around its center of mass µCij , Fig. 1 (a). This transfer is due to the rotational
e�ect of joint j around its axes of rotation, or the z axis of frame j according
to modi�ed Denavit Hartenberg (MDH) designation. This cause and e�ect rela-
tionship between frame j and link i is referred to by the subscript ij in p̈Cij and
µCij , while the C in the subscript is used to refer to the mass center of link i, the
same subscript notation will hold throughout this paper for denoting frame-link
interaction of cause-and-e�ect unless stated otherwise.

2.1 Link's acceleration due to the single-frame rotation

It can be proved that each frame j transfers to the center of mass of link i three
acceleration vectors tangential (p̈τCij), normal (p̈nCij) and Coriolis (p̈corCij). The
�rst of which is shown in Fig. 1 (b), it is due to the angular acceleration of frame
j, and it can be calculated from:
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Fig. 1. (a) Inertial moment and linear acceleration transferred to link i by frame j. (b)
Tangential acceleration of center of mass of link i transferred by frame j.

p̈τCij = εj × pCij (2)

Where pCij is the vector connecting the origin of frame j and the center of mass
of link i, × is the cross product, and εj is the angular acceleration of link j:

εj = q̈jkj (3)

Where kj is the unit vector associated with the z axis of joint j, and q̈j is the
angular acceleration of that joint. The normal acceleration is shown in Fig. 2
(a), and it is given by:

p̈nCij = ωj × (ωj × pCij) (4)

Where ωj is the angular velocity of link j due to the rotation of joint j:

ωj = q̇jkj (5)

Thus, we can rewrite the equation of the normal acceleration:

p̈nCij = kj × (kj × pCij)q̇2j (6)

Coriolis acceleration p̈corCij is shown in Fig. 2 (b), it can be calculated from:

p̈corCij = 2ωj × vrCij (7)
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Where vrCij is the velocity transferred to the center of mass of link i from frames
j + 1 up to frame i, and the superscript r is to denote that this is a relative
velocity. vrCij can be calculated from:

vrCij =

i∑
k=j+1

ωk × pCik (8)

As such the total linear acceleration transferred by frame j to the center of
mass of link i is given by:

p̈Cij = p̈
τ
Cij + p̈

n
Cij + p̈

cor
Cij (9)

2.2 Link's inertial moment due to the single-frame rotation

It can be proved that each frame j will transfer to link i three inertial moments,
the �rst of the inertial moments transferred is due to angular acceleration of
frame j:

µτCij = (RiI
i
iR

T
i )εj (10)

Where µτCij is the moment transferred by frame j into link i due to frame's j
angular acceleration, Ri is the rotation matrix of frame i relative to base frame,
Iii is the inertial tensor of link i around its center of mass represented in frame i.

The second inertial moment µn
Cij is due to centrifugal e�ect:

µn
Cij =

1

2
(Liωj)× ωj (11)

Where Li is a 3× 3 matrix that is calculated from:

Li = Ri(tr(I
i
i)13 − 2Iii)R

T
i (12)

Where the subscript in Li is to notate that the matrix calculated pertains to
link i, tr(Iii) is the trace of the inertial tensor, and 13 is the identity matrix.

The third inertial moment µcorCij is due to Coriolis e�ect:

µcorCij = (Liωj)× ωrij (13)

Where ωrij can be calculated from:

ωrij =

i∑
k=j+1

ωk (14)

Thus, the total inertial moment transferred to link i around its center of mass
due to the rotational e�ect of frames j is given by:

µCij = µ
τ
Cij + µ

n
Cij + µ

cor
Cij (15)
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Fig. 2. (a) Normal acceleration of center of mass of link i transferred by frame j. (b)
Coriolis acceleration of center of mass of link i transferred by frame j.

2.3 Dynamical representation of a single-link

Each link i can be represented dynamically by an equivalent acceleration of its
center of mass p̈Ci and an inertial moment around its center of mass µCi Fig. 3
(a). Where p̈Ci is given by:

p̈Ci =

i∑
j=1

p̈Cij (16)

Or by substituting p̈Cij with its value from (9) we get:

p̈Ci =

i∑
j=1

p̈τCij + p̈
n
Cij + p̈

cor
Cij (17)

From the previous equation we notice that the total acceleration of the center
of mass of link i can be rewritten in a form similar to the equation of inverse
dynamics by using a matrix vector notation as in the following:

p̈Ci = Ciq̈ +Diq̇ (18)

Where Ci is 3× n matrix and the jth column vector of this matrix is given by:

colj(Ci) =
p̈τCij
q̈j

= kj × pCij (19)

The subscript i attached to the matrix Ci is used to notate that the matrix
pertains to link i. The robot's links has n of C matrices each pertains to one
link. Di is also a 3 × n matrix, and the subscript i in Di is used as before. Di

columns can be calculated from:
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colj (Di) = kj × (kj × pCij)q̇j + 2kj × vrCij (20)

Using the same reasoning µCi can be calculated:

µCi =

i∑
j=1

µτCij + µ
n
Cij + µ

cor
Cij (21)

Again we notice that the contribution of q̈ to the inertial moment is associated
only with µτCij . Consequently, we can rearrange (21):

µCi = Uiq̈ +Viq̇ (22)

Where Ui is a 3× n matrix, each column vector of this matrix is given by:

colj(Ui) = (RiI
i
iR

T
i )kj (23)

Similarly, Vi is a 3× n matrix, each column vector of this matrix is given by:

colj (Vi) =
1

2
(Liωj)× kj + (Likj)× ωrij (24)

As a result, each link is represented by a linear acceleration of its center of mass,
and an inertial moment around its center of mass. Their mathematical equation
is linearized in q̈ and q̇, resembling the manipulator's inverse dynamics equation.
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Fig. 3. (a) Dynamical representation of each link. (b) Moment acting on joint j due
to robot's motion.
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2.4 Moment acting on a joint due to robot dynamics

From �gure 3 (b), the total moment µj acting on joint j is:

µj =

n∑
i=j

µCi +mipCij × p̈Ci (25)

Which can be rearranged in a form resembling the inverse dynamics equation:

µj = Gj q̈ +Hj q̇ (26)

Where Gj is 3× n matrix, each column k of this matrix is given by:

colk(Gj) =

n∑
i=j

colk(Ui) +mipCij × colk(Ci) (27)

In a similar way, each column k of matrix Hj can be calculated from:

colk(Hj) =

n∑
i=j

colk(Vi) +mipCij × colk(Di) (28)

Subscript j in Hj and Gj is to denote that these matrices are associated with
joint j.

2.5 Robot's dynamics, joint space inertia matrix, Coriolis and

centrifugal matrices

The torque acting on joint k due to robot dynamics is calculated from projecting
µk, derived in the previous section, onto the z axis of joint k as in the following:

τ k = kTkµk (29)

If we designate the inertial matrix by the symbol A, then each row k of it,
colk (A

T), is calculated from:

colk (A
T) = kTkGk (30)

Using the same notion, each row k of Coriolis matrix B, or colk (B
T) can be

calculated from:

colk (B
T) = kTkHk (31)

Thus, the inverse dynamics equation of the robot de�ned by the inertial matrix
A(q) and Coriolis matrix B(q, q̇), has been derived.

Using the same principals developed in this section the joint space centrifugal
matrix can be calculated, this is done by considering only the terms resulting
from Centrifugal accelerations during the calculation of matrices Di, Vi and Hj .
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2.6 Geometrical calculation of the time derivative of inertia matrix

The time derivative of JSIM shows up as a by-product when calculating the time
derivative of the generalized momentum in [8], which has applications in collision
detection, while as noted in [7] the author had to change the formulation of the
equation describing the rate of change of the generalized momentum in order
to avoid the numerical di�erentiation of JSIM since calculating it numerically
introduces errors which destroy its symmetric property. In this section we de-
scribe the methodology for deducing an e�cient and fast algorithm of O(n2) for
calculating TD-JSIM on the bases of the frame injection principal. The proposed
algorithm was implemented in MATLAB R© and the computational cost of this
algorithm is presented in operation count section of this paper.

It has been shown previously in (30) that each row of JSIM is given by:

colk (A
T) = kTkGk

Thus, the time derivative of matrix A is calculated:

colk (Ȧ
T) = k̇TkGk + k

T
k Ġk (32)

Since kTk is of a constant magnitude then its time derivative is given by:

k̇Tk = (ω0
k × kk)T (33)

Where ω0
k is the angular velocity of frame k. Since that the derivative of matrix

Gk can be de�ned by the derivative of its columns then by considering (27),
each column of Ġk is calculated from:

colj(Ġk) =

n∑
i=k

colj(U̇i) +miṗCik × colj(Ci)

+mipCik × colj(Ċi) (34)

While it can be shown that the derivative terms inside the summation of the
previous equation are equal to:

colj(U̇i) = ω
0
i × (RiI

i
iR

T
i kj)− (RiI

i
iR

T
i )((ω

0
i − ω0

j )× kj) (35)

And:
ṗCik = vCi − vk (36)

Where vCi is the linear velocity of the center of mass of link i and vk is the
linear velocity of origin of frame k.

colj(Ċi) = (ω0
j × kj)× pCij + kj × (vCi − vj) (37)

Thus the TD-JSIM can be calculated. Using MATLAB R©, the equations of this
section were implemented in an e�cient O(n2) algorithm for calculating TD-
JSIM available in [9]. We also want to mention here that with slight modi�cation
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of the algorithm proposed, the term CT(q, q̇)q̇ in equation (22) of [8] can be
calculated numerically and e�ciently from the relation

CT(q, q̇)q̇ = Ȧq̇ − b

Where b is the Coriolis vector. This calculation can be done e�ciently, by taking
an advantage of the fact that several parameters of robot dynamics are calculated
at the same time when Ȧ is being calculated, thus b can be calculated as a by-
product while calculating Ȧ, the cost analysis of the proposed algorithms is
described in operation count section.

3 Implementation and results

To assess the performance of GDA, a comparison with well established algo-
rithms was performed. While Robotics Toolbox for MATLAB R© (RTB) [11],
CRBA algorithm by Featherstone [12] and the symbolic-numeric method in [13],
were used for comparison, we want to mention here that after a lengthy search for
robotics toolboxes, RTB, is the only toolbox that we could �nd on MATLAB R©

that can calculate Coriolis matrix numerically.
Accompanying MATLAB R© code is provided in the repository [9], where we

developed the following functions:
1- GetMassMatrixGDA: calculates joint space inertia matrix.
2- GetCoriolisMatrixGDA: calculates joint space Coriolis matrix..
3- GetCentrifugalMatrixGDA: calculates joint space centrifugal matrix.
4- GetDerivativeOfMassMatrixGDA: calculates the time derivative of JSIM.
5- GetCTdqGDA: calculates the time derivative of JSIM, Coriolis vector, and

CT(q, q̇)q̇ as described before.
The repository also contains a detailed breakdown on the computational

complexity for the implemented algorithms, or the number of �oating point op-
erations, additions and multiplications, as a function of the number of DOF of
the robot. Table 1 shows a summary, for comparison the table lists also the
computational complexity of the other algorithms. For constructing joint space
inertia and Coriolis matrices, RTB invokes several calls of the e�cient recursive
Newton-Euler, as described in [14]. As such RTB constructs JSIM column by
column. This is done by assigning a unity value to only one element of joint's
acceleration vector, while assigning zeros to remaining elements, joints veloci-
ties and gravity term, then recursion is performed, and the associated column
vector of the inertia matrix is calculated. The same procedure is repeated for
all of JSIM columns, and since that the computational complexity of recursive
Newton-Euler is O(n) and that constructing the inertia matrix requires n re-
cursions, then the total computational complexity of the algorithm is of O(n2).
For calculating Coriolis matrix RTB uses the same methodology it applies for
calculating JSIM, that is by performing several recursions, at each recursion the
angular accelerations and gravity term are set to zero, while one of the possible
combinations of (q̇i, q̇j) is utilized, as such RTB invokes n2/2 recursions, and the
total computational complexity is of O(n3).
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Table 1 also shows that the Composite Rigid Body Algorithm (CRBA) is
more e�cient in calculating the mass matrix. In contrast, the proposed method
can be used to calculate the inertia matrix, Coriolis matrix, Centrifugal matrix,
and TD-JSIM matrix with computational complexity of O(n2). An added ad-
vantage of GDA is that when the aforementioned matrices are being evaluated
robot dynamics represented by inertial moments and accelerations of the links
are being calculated as a by-product of the computations.

Table 1. Operation count for proposed method and other methods, m stands for
multiplication and a for addition.

Method Matrix Cost

GDA JSIM (18n2 + 49n)m+ (16n2 + 37n− 3)a

GDA Coriolis (36n2 + 49n− 3)m+ (34.5n2 + 32.5n− 6)a

GDA Centrifugal (15n2 + 58n)m+ (13.5n2 + 39.5n− 3)a

GDA TD-JSIM (46.5n2 + 124.5n− 36)m+ (51.5n2 + 117.5n− 41)a

CRBA JSIM (10n2 + 22n− 32)m+ (6n2 + 37n− 43)a

Symbolic-Numeric JSIM-Coriolis ( 3
2
n3 + 35

2
n2 + 9n− 16)m+ ( 7

6
n3 + 23

2
n2 + 64

3
n− 28)a

RTB JSIM O(n2)

RTB Coriolis O(n3)

4 Conclusion

In this paper we proposed a novel algorithm for representing the dynamics of
serially linked robots and calculating its joint space inertia matrix, Coriolis ma-
trix, centrifugal matrix, and the time derivative of joint space inertia matrix.
In addition we described the frame injection principal. A comparison between
the proposed algorithm against other well established algorithms was made, the
performance of the proposed algorithm was discussed in operation count section
of this paper. We perceive that GDA's way of representing robot dynamics in
a mathematical form resembling the equation of the inverse dynamics as intu-
itive, simple and easy to implement. It's remarkable e�ciency is re�ected by the
O(n2) algorithm deduced for calculating the time derivative of joint space inertia
matrix. By using this methodology other parameters of robot dynamics can be
calculated e�ciently in a like manner to what had been presented in this paper.
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