
Navigation and obstacle avoidance: a case study
using Pepper robot

João R. Silva
Mechanical Engineering - POLO II, University of Coimbra

Coimbra, Portugal
Email: joao.ricardo.silva@uc.pt

Miguel Simão
Mechanical Engineering - POLO II, University of Coimbra

Coimbra, Portugal
Email: miguel.simao@dem.uc.pt

Nuno Mendes
Mechanical Engineering - POLO II, University of Coimbra

Coimbra, Portugal
Email: nuno.mendes@dem.uc.pt

Pedro Neto
Mechanical Engineering - POLO II, University of Coimbra

Coimbra, Portugal
Email: pedro.neto@dem.uc.pt

Abstract—In this paper we present a novel strategy and imple-
mentation of autonomous navigation for the Pepper robot. The
proposed solution is modular and relies on the proper integration
of existing Pepper functionalities. The human interacts with the
robot using voice and/or gesture commands to setup the robot
functionalities. An example use case demonstrates the ability of
the robot to navigate in office environment and grasp an object
to place in a target location. The robot is also able to avoid
obstacles while navigating.

Index Terms—Navigation, Obstacle avoidance, Pepper, Robot

I. INTRODUCTION

Pepper is a companion/social robot designed to allow cog-
nitive and physical interaction with humans. Social robots
aim to improve the living conditions of people who interact
with them. Pepper is able to recognize faces and basic human
emotions like joy, sadness, anger or surprise [1]. These abilities
make it ideal to engage with people through conversation.

The motivation to conduct this study comes from the fact
that there is a lack of integrated solutions for navigation,
obstacle avoidance and grasping of objects for the Pepper
robot. In this paper, we study Pepper’s capabilities to navigate,
to avoid obstacles and to grasp objects. Based on off-the-shelf
vision and navigation techniques, our objective is to use Pepper
to move an object from a location to another one within an
indoor space. In order to encourage the development of other
related solutions the running code is provided in GitHub [2].
An example use case demonstrates the ability of the robot
to navigate in office environment (Land Mark Detection) and
grasp an object to place in a target location. The robot avoids
obstacles while navigating and the robot paths are analysed.

Robots have been extensively studied, from autonomous
navigation, to grasping to human-robot interaction. Tackling
the social aspect, robots have been used in social experiments
consisting in spoiling a game task [3]. In this study, the Pepper
robot is controlled with the objective of bumping into a table
where a human is playing jenga, and making the jenga tower
collapse. It is studied how people react to mistakes caused
by the robot and if there is any change to the empathy after

a failed action when compared to humans. The CARESSES
project is a joint EU-japan effort to build culturally compe-
tent assistive robots. It was studied the possibility of having
culturally aware robots [4], [5]. In [4] it is discussed how to
generate robot plans that respect cultural preferences, and how
to execute them in a way that is sensitive to those preferences.
In [5] the authors discuss how guidelines describing culturally
competent assistive behaviours can be encoded in a robot to
effectively tune in actions, gestures and words. Related to this
topic, in [6] it is proposed an incremental learning model
for emotional behaviours which also takes into consideration
the cultural traits of the user, identified through long term
interaction. The application of social norms in robot behaviour
was studied and reported in [7]. Such approach uses the
notion of an institution to realize social norms in real robotic
systems. It is used a system of leader and follower robots to
make a presentation of a room. The authors executed 30 real
experiments with user-based evaluation with 40 participants.

In [8] it is created a virtual object dataset that integrates
realistic robots (e.g. Pepper) in virtual environments to gener-
ate useful interaction sequences in order to boost the imple-
mentation of object recognition using deep learning. Object
recognition using deep learning algorithms in a mobile service
robot is discussed in [9]. To achieve their goals, the authors use
two distinguished neural networks. The first one is YOLOv2
that incorporates an existent dataset, COCO, to identify the
objects seen by the robot. This method relies on human help
in the form of a survey interaction to validate or accurately
labelling objects identified by the robot. The answers given
by the user are saved and used to create a new dataset from
scratch. These data are used by a second neural network
called Human Help (HHELP). The two neural networks are
used in parallel achieving better results and higher predictive
precision.

Kinesthetic learning has been used to to improve the per-
formance of autonomous feeding robots, allowing intuitive
teaching by demonstration [10]. However, if the human user
is not an expert in robotics, he/she will probably not take into



Fig. 1. Pepper coordinate system using ALMotion module.

consideration the energy cost of the demonstration activity,
nor will be able to make a smooth path for a movement that
involves more than 2 joints. To solve this issue, it is presented
the Parameterized Similar Path Search (PSPS) algorithm,
which allows the robot to improve robot motion learned from
kinesthetic learning over a known cost function. Computer
vision and deep learning technics have been implemented
to teach a robot to copy and predict human movement to
facilitate the interactive process [11]. It is proposed the use of
a novel motion generative adversarial network (GAN) model
that learns to validate the motion prediction generated by the
encoder-decoder network through a global discriminator in an
adversarial manner. The GAN-based approach is shown to
outperform state of the art prediction approaches. The method
incorporates images from an RGB camera and the depth
sensor to form a point cloud. Each RGB image is processed
using OpenPose to get the location of human joints in image
coordinates, which in turn will allow determining 3D skeleton
points of the human in robot coordinates.

II. ROBOT INTERFACE

When using Pepper’s interaction software (Choregraphe),
it is available the option of turning off the autonomous life
of the robot. By default, Pepper has autonomous life turned
on, meaning that the robot is responsive and seeks outside
stimulation to interact with. When disabling the autonomous
life, Pepper turns unresponsive but executes programming
commands with less regard for security. This aspect, although
less safe, makes Pepper easier to maneuver around. The two
modes are not quite compatible since if we want to move
the robot around, we must renounce from the interaction
aspect and vice versa. Our implementation method consists
in creating a solution that runs the functionalities of au-
tonomous life, while Pepper’s autonomous life is disabled. We
implement a python script that takes voice or even gestures
from electromyographic (EMG) signals as input to run robot
applications. These voice commands together with gestures
allow to manage the interactive process with the robot.

A number of studies rely on Robotic Operating System
(ROS) to develop solutions for Pepper robots [1]. Although
this is true, we aim to study Pepper’s capabilities with a
python-based interface. It is easier to use and keeps the
possibility to integrate external software tools such as artificial

intelligence solutions. The python Software Development Kit
(SDK) is used on a Pepper robot hardware version 1.6 with
software updated to version 2.5. Robot and computer commu-
nicate through a TCP/IP connection. Both Pepper robot and
computer are connected to the same network, the robot will
be able to provide an IP Address that concede the possibility
to remotely command it.

The implementation presented in this paper is developed
using the python SDK with a NAOqi process that includes
a public API with modules divided into groups: NAOqi’s
Motion, Audio and Vision. ALProxy provides access to every
method or module available for robot programing that we
need to connect to. There are two types of modules, local
modules and remote modules. NAOqi provides services where
local modules are in the same process so that they can share
variables and call each other’s methods. In our approach
we use the remote modules to establish the robot-computer
communication using the network and disabling autonomous
life.

III. MODULAR IMPLEMENTATION

The implementation of the proposed application incorpo-
rates different Pepper’s specific modules such as:

• ALMemory – Provides live data of different parameters
such as position, temperature, stiffness. It also allows the
storage and retrieving of saved information;

• ALMotion – Provides methodologies related to robot
motion;

• ALNavigation – The navigation functionality allows Pep-
per to learn previously unknown locations, definition of a
map, obstacle avoidance and retrieving points associated
to the localization on the map;

• ALTracker – This module allows the robot to track
different targets, such as landmarks and faces, or even
a red ball. They can be used with the aim of establishing
a bridge between target detection and robot motion to
make the robot keep in view the target in the middle of
the camera;

• ALSpeechRecognition – Provides the robot the ability to
recognize a given predefined word or sentence.

A given robot program can be activated/deactivated using
the speech recognition functionality in which we can setup
a priori the vocabulary with the word we want Pepper to
detect/recognize. Since Pepper has native speech recognition
capabilities, it waits until an audio input that corresponds to
a specified keyword triggers the associated action. To deal
with false positive activation of voice commands, we set a
threshold of 0.445. Through trial and error, we found this
value to be suitable to keep undesired voice activation to a
minimum. We also propose to command the robot by human
upper limb gestures. The methodology followed to achieve
this robot skill is described in our previous studies [12],
[13]. Basically, a gesture is captured by a wearable sensory
system (IMUs + EMGs) which sends gesture information to
a remote application. This one, which is executed in a remote
computer, consists in a machine learning algorithm to process



Fig. 2. Real environment (left) and resulting map representation of the explored area (right).

Fig. 3. Top view representation of the explored area. Robot path without obstacle avoidance (a) and with obstacle avoidance (b).

gesture information and identify which gesture a robot’s user
is performing. Whenever a gesture is recognized, a robot
command (which is associated to an individual gesture) is sent
to the robot.

A. Navigation

Simultaneous localization and mapping (SLAM) using Pep-
per sensors can be a challenge [1]. The lasers incorporated
on the robot lack the capability to provide positioning points
with enough consistency to create a detailed map for SLAM.
However, if the exploration is done in the presence of well-
defined edges through the physical walls of the desired map,
the robot is able to create an understandable map of the
environment. Light can be also an issue when creating a map,
an intense light source directly on the sensors could result
in several errors. In the same way, environments with too
much free space near the floor can be problematic because the
creation of the map uses sensors below the waist of the robot.
Some robot tests were carried out on a real work environment

utilizing furniture to better define the edges of the map. The
working area and the respective resulting map are shown in
Fig. 2 and Fig. 3.

At an initial stage of this study, we considered performing
the exploration simultaneously with the landmark tracking in
order to save specific locations on the map while its being
created. This method revealed to be impracticable. This means
that when the method is running no other method can run
simultaneously, implicating that the point definition would
have to be done separately and after exploration. To deal with
this issue, the objective passed by being able to run each
module at the time in order to obey the blocking calls and
run the experiments smoothly.

While constructing the map, the robot creates a coordinate
system relative to the position where Pepper starts the mapping
process. When using the ALMotion module Pepper uses a
coordinate system that consists in 3 coordinates [x, y, j] being
theta the rotation around z-axis in radians Fig. 1. However,
when using the Navigation functions, Pepper does not use j,



Fig. 4. Navigating with a direct route from point A to point B (a) and our
proposed approach (b).

but instead it only uses xy coordinates relative to the map.
Pepper can also choose its own path and speed while moving
around. Like exploration, navigation also represents a blocking
call.

After the mapping process is completed, since the naviga-
tion functionality only uses two coordinates and the orientation
cannot be controlled, we felt the need of marking various
points on the map in order to make good use of the navigation
and obstacle avoiding methods. We addressed this issue by
saving various points related to the pretended stoppage target,
Fig. 4. If Pepper is standing in a position (point A with
the orientation according to the arrow inside it) and intends
to move to a target position (point B with the respective
orientation), moving directly from point A to point B will
result on the final orientation being the same as the one
taken by the robot during the movement, Fig. 4 (a). This is
problematic since we need to define the orientation that the
robot should follow to perform the required tasks. To avoid
the previously mentioned issue, we propose that after leaving
point A, the robot should instead take a longer path to its
destiny, moving first to point C, then D and E before arriving
to point B. This way the robot is able to adjust its orientation.

B. Object manipulation

For the manipulation of objects, the robot was controlled
using the Choregraphe software functionalities to define the
motion pretended for each joint of the robot arms. The process
started by taking Pepper’s joints manually to the desired
position, then the timeline box available in Choregraphe made
it possible to store the values of the joints in a keyframe,
creating a behaviour to the arms that would grab the object
over time. Then, we exported the motion to python to be able
to integrate it into our script.

Since the robot is in the desired position, the module
ALTracker becomes active and the robot moves in the direction
of the marker respecting a previously defined distance. The
activation of the landmark tracker can accurately calculate the
distance relative to the target and it will give us the precision
we require to perform a given task. Since every landmark
provided by Pepper is different and identified with numbers,
it is possible to set different goal distances for each one. In
the example in Fig. 5, the distance to the landmark positioned
on the object was set to 28 cm and 65 cm to the landmark
on the target. After Pepper grabbed the object, it is necessary

to take care with its positioning during transportation, so that
the robot does not block its depth sensor, used to calculate
the distance to the landmark where Pepper should place the
object. We opted to use an object with high volume and low
mass, this way we can have a bigger surface for Pepper to
grab the object and preventing possible floatation of the joints
positioning that would be hard to compensate with a smaller
object. An empty plastic jar, Fig. 7, with 230 mm in height and
an average diameter of 120 mm was used in the experiment.
We found that although the robot is able to lift more weight,
this would compromise the grip of the fingers when moving
the object.

IV. EXPERIMENTS AND RESULTS

The main steps leading to the implementation of our ex-
perimental setup are represented in the flowchart in Fig. 6.
The object and the target are distanced in 3 meters. The robot
starts by making the exploration of a well-defined environment
to create a map. After retrieving the map, it is used the
ALMotion module in order to move pepper to the position
correspondent to the points of interest. The ideal path is
marked by letters in alphabetic order, Fig. 3. After moving
a defined distance, when the robot reaches at one of the
marked points, it uses the ALNavigation module to retrieve
the coordinates corresponding to the current position on the
map. After all the points are covered and all coordinates are
retrieved, it once again uses the ALNavigation module to
navigate the robot to the home position that corresponds to
the point where the robot started both the exploration and
the point definition. The actual path taken by the robot while
defining points is represented by a black line, Fig. 5.

After initiating the behaviour that will command the robot
to grab an object, the robot moves in direction of point F, and
when this point is reached, the landmark detection is initiated.
After detecting a landmark, Pepper will move in the direction
of the landmark calculating its distance to it. Once the defined
distance to the landmark is reached, an action follows. In this
implementation, when the robot reaches the landmark placed
on the jar it will trigger the movement of the arms to pick the
object from a table and after completing this action. The robot
then moves to the point of the map where the next action is
triggered, as soon as it reaches point A landmark detection is
once again enabled. This action triggers the robot to move in
direction of the target landmark where Pepper will drop the
plastic jar.

Dropping the object corresponds to the final task for this
particular experiment, after the final task is fulfilled the robot
will end the behaviour by returning to the defined home
position. Using the ALNavigation instead of hardcoding
coordinates with ALMotion is preferred since ALNavigation
module makes it possible to use the obstacle avoidance
method, where pepper can automatically estimate a new path
to reach a certain point of the map.

A simple test is done to evaluate the efficiency of the
presented method. After the mapping and definition of points,
the program is executed 30 times to evaluate if Pepper can



Fig. 5. Robot path without obstacle avoidance (a) and with obstacle avoidance (b).

Fig. 6. Flowchart representing the main steps for implementation.

Fig. 7. Example use case sequencing.



TABLE I
RESULTS RELATIVE TO THE IMPLEMENTATION TEST

Collision avoidance scenario Sucess Fail
Without obstacle avoidance 13 2

With obstacle avoidance 9 6

pick the jar and take it to the target. The tests are then divided
in 6 sessions of 5 tests each in a total of 15 tests being perform
with obstacle avoidance and 15 without obstacle avoidance. To
test obstacle avoidance performance, we divide the test in two
parts. Both tests start the same way, the robot goes straight
to the object, from home position to point F, picking it up.
After, an obstacle is placed in the path that the robot would
take to achieve the final target. The robot proceeds to make
the necessary calculations to avoid the obstacle and reach the
target in point A. It is important to note that the placement of
the obstacle in the path should not occupy too much of the
free space available for navigation.

While Fig. 3 represents the ideal path that should be taken
by the robot, starting in home position, picking the object,
taking it to the target position and then returning home.
The actual paths taken by Pepper in the experiment can be
visualized in Fig. 5. To create the representation of the paths,
we implemented threads on the script that allow running
different functions in parallel. While the robot is moving,
another function is looping and storing the map coordinates
every half second. After the task ends, it compiles the graphs
that show the trajectory. The path taken follows the numerical
order from Fig. 5. There is a floatation from the ideal pretended
path, however, the iterative implementation of points improves
the precision of the robot so that the task can be successfully
completed. In the end of the experiment the results were
promising, showing that the method was successful for the
proposed goal. A clearer description of the results can be
observed in Table I. The noted failures in the experiment
occurred mainly at the start of the test sessions and were in
their majority result of human errors. In the case of obstacle
avoidance, the major error is due to the obstacle occupying too
much free space. Since Pepper will try to keep a safe distance
to every detected obstacle, if there is no space available in
order to pepper navigate, the robot will struggle to move past
the obstacle.

CONCLUSION

The proposed study approaches autonomous navigation and
grasping for the Pepper robot. The robot is able to avoid
collisions while is navigating, as well as grasp an object and
move it to a target location. Also, the human user interfaces
with the robot using voice and/or gestures to setup the modular
architecture. An example use case demonstrates the ability of
the robot to navigate in office environment and grasp an object
to place in a target location. The robot is also able to avoid
obstacles while navigating.

ACKNOWLEDGMENTS

This work was supported in part by the Portuguese
Foundation for Science and Technology (FCT) project
CEECIND/01421/2017, project COBOTIS (PTDC/EME-
EME/32595/2017), and the Portugal 2020 project
DM4Manufacturing POCI-01-0145-FEDER-016418 by
UE/FEDER through the program COMPETE2020.

REFERENCES

[1] V. Perera, T. Pereira, J. Connell, and M. M. Veloso, “Setting up pepper
for autonomous navigation and personalized interaction with users,”
CoRR, vol. abs/1704.04797, 2017.

[2] https://github.com/JoaoRicardofss/Peppergraspingandnavigation , 2019.
[3] R. Agrigoroaie, A. Cruz-Maya, and A. Tapus, “âoh! i am so sorry!â:

Understanding user physiological variation while spoiling a game task,”
in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 313–319, Oct 2018.

[4] A. A. Khaliq, U. KÃ¶ckemann, F. Pecora, A. Saffiotti, B. Bruno,
C. T. Recchiuto, A. Sgorbissa, H. Bui, and N. Y. Chong, “Culturally
aware planning and execution of robot actions,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 326–332, Oct 2018.

[5] A. Sgorbissa, I. Papadopoulos, B. Bruno, C. Koulouglioti, and C. Rec-
chiuto, “Encoding guidelines for a culturally competent robot for elderly
care,” in 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 1988–1995, Oct 2018.

[6] N. T. Viet Tuyen, S. Jeong, and N. Y. Chong, “Emotional bodily ex-
pressions for culturally competent robots through long term human-robot
interaction,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 2008–2013, Oct 2018.

[7] A. Wasik, S. Tomic, A. Saffiotti, F. Pecora, A. Martinoli, and P. U.
Lima, “Towards norm realization in institutions mediating human-robot
societies,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 297–304, Oct 2018.

[8] A. Garcia-Garcia, P. Martinez-Gonzalez, S. Oprea, J. A. Castro-
Vargas, S. Orts-Escolano, J. G. Rodrı́guez, and A. Jover-Alvarez,
“The robotrix: An extremely photorealistic and very-large-scale indoor
dataset of sequences with robot trajectories and interactions,” CoRR,
vol. abs/1901.06514, 2019.

[9] J. Cartucho, R. Ventura, and M. Veloso, “Robust object recognition
through symbiotic deep learning in mobile robots,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 2336–2341, Oct 2018.

[10] T. Rhodes and M. Veloso, “Robot-driven trajectory improvement for
feeding tasks,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 2991–2996, Oct 2018.

[11] L. Gui, K. Zhang, Y. Wang, X. Liang, J. M. F. Moura, and M. Veloso,
“Teaching robots to predict human motion,” in 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pp. 562–
567, Oct 2018.

[12] P. Neto, M. Simão, N. Mendes, and M. Safeea, “Gesture-based human-
robot interaction for human assistance in manufacturing,” The Inter-
national Journal of Advanced Manufacturing Technology, vol. 101,
pp. 119–135, Mar 2019.

[13] M. A. Simao, P. Neto, and O. Gibaru, “Unsupervised gesture segmenta-
tion by motion detection of a real-time data stream,” IEEE Transactions
on Industrial Informatics, vol. 13, pp. 473–481, April 2017.


