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Abstract—The use of gestures as interface between humans and
robots to facilitate communication between them is a long-sought
goal. Although many gesture solutions have been presented,
none of them cope entirely with wrong gesture recognition.
This study proposes a novel electromyography (EMG) prototype
sensor to capture gestures and also algorithms and procedures
to discriminate data containing valid gestures (segmentation).
Gestures are recognized using convolutional neural network
(CNN) model. The proposed solution presented high recognition
accuracy overcoming other similar studies in literature. Test
results demonstrated that the proposed solution presents high
performance and suggested its use in industrial environment.

Index Terms—Pattern recognition; Electromyography; Indus-
trial Robotics; Industry 4.0

I. INTRODUCTION

A great ambition of Industry 4.0 is to reach more production
in less time with less human effort. On the same time,
operators perform deeper industrial process supervision to
obtain better product quality with less waste. A key factor
to attain efficient supervision is associated to the communi-
cation/interaction between operators and machines [1]. The
interaction must provide the following characteristics: prac-
tical, high availability, fast, efficient and intuitive. From the
different types of interaction, human-gestures are ones that
aggregate the requirements previously highlighted [2]. Upper-
limb gestures seem to be suitable for industrial purposes
because operators can perform many different gestures with
high repeatability and controlled stroke movement.

A few devices can be used to capture upper-limb human
gestures such as vision systems and wearable sensors. Surface
electromyography (sEMG) sensors gather the advantages of
wearable sensors and on the same time is a non-intrusive
sensor, ergonomic, easy to use, hassle-free and can operate
without interruptions for long working periods. To use a sEMG
sensor, the user simply puts it over the human skin in a muscle
region of interest.

A sEMG signal, which is non-stationary, represents the sum
of subcutaneous motor action potentials generated through
muscular contraction. Artificial intelligence can then be lever-
aged as the bridge between sEMG signals and an industrial
collaborative robot. A feasible solution must be able to identify
what is a valid gesture (gestures belonging to a training

Fig. 1: System architecture.

dataset), what is an invalid gesture (gestures not belonging
to the training dataset) and what is a no-gesture (rest). This is
the way to achieve a solution that presents the robustness and
reliability necessary to arouse the interest of the industry.

In pattern recognition, segmentation consists in data pro-
cessing to identify if there is any valid pattern on a data-
stream. When a segmentation process labels a data-stream as
containing a valid pattern, a deeper analysis/processing must
be carried out with this data-stream to identify which pattern
is in the data-stream. This one is called recognition process.
Many studies have been carried out in pattern recognition, but
the majority of them do not separate the segmentation process
from the recognition process [3]–[5]. Despite all these studies,
no optimum solution has been achieved, a solution that can
conveniently identify all the three types of gestures mentioned
above. As such, the main contribution of this study is to
present a novel segmentation scheme to select the sEMG signal
that contain useful information (human gestures) and send it
to a pattern classifier (for sEMG-based gesture recognition
purposes). The user’s gestures are captured by sEMG sensors
and transmitted via Wireless to a personal computer which
analyzes the data and subsequently sends commands to a
collaborative robot. A schematic representation of the used
architecture is displayed in Fig. 1.

This paper is organized as follows: section II presents a
survey of pattern recognition studies for industrial purposes
whose process of data segmentation is approached. Section
III describes the hardware components used to capture human
gestures. This section also details the algorithms and all
the steps used to recognize gestures. Section IV presents



procedures followed by users, who carried out tests, and
implementation. Finally, section V displays results, highlights
outcome testing and accuracy analysis the experimental setup,
while section VI concludes the paper.

II. LITERATURE REVIEW

The problem of novelty detection is important in order
to improve robustness of pattern recognition systems. Even
if a given system presents a relatively high accuracy in the
classification of predetermined (trained) classes, it is still likely
to miss-classify novel classes as one of the trained classes.
This is a seldom addressed failure mode that could lead to
unexpected results and potentially endanger users and their
environment.

Liu and Huang propose the use of an ensemble of one-
class (OVA) SVDD classifiers that demonstrates a high level
of generalization [6]. If a new sample does not fall into any
of the SVDD hyper-spheres, it is considered an outlier, a
novelty. Else, it is considered a targeted pattern and can be
further processed. However, this ensemble does not replace
a multi-class classifier because the SVDD hyper-spheres may
intersect. In this case, the same pattern is classified as multiple
classes, so an extra step must be taken to determine the final
classification output.

A different solution using modified boosted Random Forests
(MCLPBoost) was studied to solve the problem of novelty
detection [7]. The effect of arm movements on sEMG pat-
tern recognition for hand and wrist motions was studied in
[8]. Results showed that arm movements significantly impact
classification performance when the classifier is trained in one
arm condition and tested in another.

A method to accurately divide continuous data-streams into
dynamic and static blocks was suggested by [9]. Segmentation,
the name given to this method, proposes to identify when
a gesture starts and ends. This study reported reduction of
the number of wrongly classified gestures. If a segmentation
process is not properly defined, the beginning of a gesture
is assumed too late ignoring important parts (data frames)
from the gesture, over-segmentation (excessive segmentation).
In order to overcome this issue, Simão et al. proposed the use
of a genetic algorithm to optimize a segmentation method [10].
This method demonstrated reduction of over-segmentation
error to acceptable values.

The process of data segmentation is many times despised in
gestures recognition. Segmentation is treated as a classification
issue and not isolated from the broader purpose [3]–[5], [11],
[12]. Segmentation is more challenge when sEMG data are
used to represent a gesture. This kind of data/signal is not
clearly stable being difficult to set boundaries even for human
limbs in relaxed states. sEMG technology is more sensitive to
involuntary movements than other technologies [13], [14].

III. METHODOLOGY AND EQUIPMENT

A. Hardware

A novel prototype device based on sEMG and inertial
measurement unit (IMU) developed by Technaid S.L. was used

in this study. The prototype is constituted by two bracelets, one
of them is composed of an 8-channel sEMG, dry-electrode,
and the other one is composed by a 6-channel sEMG. A
variable number of 9-axis IMUs can integrate this prototype.
In this study no IMU data are used.

The great advantage of the prototype is its non-intrusive
nature, as the dry-electrodes allow users to simply put it
over human-skin without any preparation. Unlike, gel-based
electrodes require the shaving and washing of the skin to
obtain optimal contact between the user’s skin and electrodes.
However, dry electrodes, such as the ones employed in this
prototype, are less accurate and robust to motion artifact than
gel-based ones [15].

A personal computer with a NVIDIA GeForce GTX 1080
Ti GPU and an Intel(R) Core(TM) i7-8700k CPU was used
to carry out all signal acquisition and processing stages of
this study. A collaborative KUKA iiwa robot was used in
experimental tests.

B. Signal processing (Dimensionality and Filtering)

When a data frame is collected by the prototype, twenty
sEMG data objects, on average, are received from the proto-
type. In fact, the number of sEMG data objects can be different
from frame to frame being required a data dimensionality
adjustment. The approach proposed consists in excluding
objects that exceed twenty objects, keeping the most recent
twenty objects, or repeating the last object up to obtain twenty
objects.

All sEMG signals were sampled at 1000 Hz and then filtered
in order to decrease the captured noise, signal artifacts and
power line interference. A notch filter of 50 Hz and a fourth-
order Butterworth band-pass filter of 20-500 Hz were used, the
same filtering approach suggested in two studies that reported
good results [16], [17].

C. Sliding-window

A sliding-window method is used in this study. This method
consists in grouping a given number of frames, the last ones
acquired, and uses them in the processing stages presented
in the next sections of this manuscript. sEMG signals are
sectioned into 500 ms (500 frames) segments with variable
increments which can range from 250 ms (250 frames, 50
% overlap) to 0 ms (no overlap). The size of the sliding-
window was based on the time necessary to complete the
longest gesture of an experiment detailed in section IV.

An array variable m_5, which is detailed in section III-F2,
consists in a binary variable of 20 elements (for this study)
and each element contains the information relatively to 25
frames and all sEMG channels. If an element value is 1,
its corresponding frames contain muscular activity, which
indicates that those frames are part of a gesture. The last
10 components of m_5, corresponding to the last 250 sEMG
frames of a sample, are processed to find muscular activity that
can be reused as taking part in a next/future sliding-window.
Just one full sequence of muscular activity is accepted to be
reused in a future sliding-window, but it cannot be connected



to the first 10 components of m_5. For example: if m_5 = [0
1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0], the last six frame
groups (the last 150 frames) will be used in the next/future
sliding-window; if m_5 = [0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1
1 0 0 0], none frame of the current frame will be used in the
next/future sliding-window; if m_5 = [0 1 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0 1 1], the last two frame groups (the last 50
frames) will be used in the next/future sliding-window.

Recent studies suggest that the latency should be kept bel-
low 300 ms for real-time purposes [18]–[21]. Nevertheless, in
applications that do not require real-time, latency can be larger
and ranges widely depending on the purpose/application. The
solution presented in this manuscript is not intended to be used
for real-time applications. However, the procedure presented
above can be adjusted to provide a latency lower than 300 ms
to be used in real-time applications.

D. Normalization

Generally, sEMG signal is a very changeable signal that
can be affected by different factors and presenting undesirable
effects such as offset. Data normalization can provide to sEMG
signal relational characteristic, improvement data integrity and
reduction processing complexity. When normalization is used
as part of a pattern recognition solution, normalization is
pointed as yielding faster training times whilst allowing better
generalization [4]. Data provided by each sEMG channel are
normalized with mean 0 and standard deviation 1. In order
to establish normalization parameters, in an initial acquisition
step, when the prototype is turned on, a few sEMG frames are
acquired. Notice that different and independent normalization
parameters are established for each sEMG channel.

E. Feature extraction

Extraction of features from a sensor signal is a common
procedure in pattern recognition. This step is particularly
import to better represent/explicit a given pattern.

Feature extraction gains particular relevance in sEMG be-
cause such a signal is not intuitive to perceive, it usually
presents low amplitude and is full of variability sources.
Features allow easy differentiation between patterns while
reducing the variance of examples within the same pattern.
Features can be regrouped into different types, mainly: time,
frequency and time-frequency domains [4], [18], [22], [23].

In this study the time domain features were used to carry
out segmentation process, namely the variance feature.

F. Segmentation process

In order to decide if a data-stream contains a valid pattern
(which belongs to a pattern library), two methods are sug-
gested, namely an algorithm based on artificial intelligence
k-nearest neighbors (k-NN), and a threshold-based algorithm.

1) k-nearest neighbor algorithm: This algorithm consists
in using a pattern classification model that distinguishes two
classes, valid pattern and invalid pattern. If a data-stream is
classified as invalid pattern, no gesture is included in the data-
stream, it is forgotten and consequently deleted. On the other

hand, if the data-stream is classified as valid pattern, the data-
stream is used again in another pattern classification model
to identify which pattern is represented by that data-stream.
This last pattern classification model is known as recognition
process and will be presented in section III-G.

A method proposed to carry out the segmentation process
consists of a k-NN classification model. In the construction
of this classification model, the Euclidean distance method
and 5 neighbors were used. As referred in section III-E, the
features used as inputs to both segmentation algorithms were
the variance of the sEMG signals.

2) Threshold-based algorithm: A threshold algorithm
based on several thresholds and binarizations was developed to
perform segmentation. The main steps of threshold algorithm
are clarified bellow. The algorithm starts by acquiring 500
sEMG frames (SEMG) which are grouped in small sets with
a given number of frames, defined by variable num_f, and
the variance for each set is computed (line 2 in the algorithm
Segmentation). Following a binarization of the feature variance
(Var) by comparing it with a threshold array (thre_arr) which
has defined a threshold value for each channel (line 3). A new
data grouping is performed in line 7 through the algebraic sum
of a given number of frames, defined by num_f, in turn the
new data are binarized by comparing it with a zero’s array
(line 8). Data from different channels are grouped in line 10
and compared with a threshold value, thre_num in line 11,
binarizing once again the sEMG data. One last data grouping
are performed in line 12 resulting a single value which is
compared with value 0 to check if the sEMG data contain a
valid gesture or not (lines 14 to 17).

A genetic algorithm (GA) was used to establish thre_arr, a
threshold value for each sEMG channel. Some samples with
muscular activity and without it were collected, their frames
were grouped, with equivalent size (num_sub_sets) and order
to variable m_5, and labelled (frame_set_label) accordingly.
From this stage resulted a number of sets n_sets properly
labeled. Each frame group was used by the GA to minimize
a cost function err (1). Although the frame_set_label and
m_5 variables are boolean variables, they are used by the cost
function as algebraic variables assuming the value 0 or 1 when
their elements are false or true respectively. The GA benefits
from having its variables constrained. The lower limit is zero,
and the upper limit can be the maximum values of the ground
truth features. Furthermore, the GA used the segmentation
algorithm presented above with the thre_num being defined
by the user by a trial and error process.

err =

n_sets∑
i=1

num_sub_sets∑
j=1

|frame_set_label (i, j)−m_5(j)|

(1)

G. Pattern recognition process

A recognition process must be executed to identify which
gesture from a gesture library is represented by a sEMG
signal. The classification model used in this study is based



Algorithm 1 Segmentation (SEMG , num_f , thre_arr
, thre_num)
inputs :

sEMG data matrix SEMG
number of frames in a set num_f
threshold array thre_arr
threshold value thre_num

output :
flag to identify if the data contain a gesture gesture_flag

1: for i ← 1 to length(SEMG(num_channels, :))−num_f
2: Var(:)← Variance(SEMG(:,i :i+num_f ))
3: M_1(:)← V ar(:) > thre_arr(:)
4: end
5: num_sub_sets ← length(M _1(num_channels, :))/num_f
6: for i ← 1 to num_sub_sets

7: M_2 (:, i)←
i+num_f∑

j←i

M_1(:, j)

8: M_3(:, i)←M_2 (:, i) > [0]
9: end

10: m_4(:)←
num_channels∑

i←1

M_3 (i, :)

11: m_5 (:)←m_4 (:) > [thre_num]

12: m_6←
num_sub_sets∑

i←1

m_5 (i)

13: if m_6 > 0
14: gesture_flag ← true
15: else
16: gesture_flag ← false
17: end
18: return gesture_flag

on Convolutional Neural Networks (CNN), a deep-learning
method that extracts features from the sEMG signal directly
and then uses these features to identify which gesture is
contained on them (classification). The CNN used in this study
is displayed on Fig. 2.

Owing to transitions between gestures (hand motion from
one gesture to another) and, sometimes, while holding a
gesture, one sample could be misclassified. This could restrict
final implementations of the gesture recognition system. To
avoid this issue and improve gesture recognition, the last
five predictions are kept and a gesture is considered as it
has been performed, if and only if, at least four of the five
predictions are the same. Otherwise, without producing any
result the oldest prediction is forgotten and a new one is
considered altogether with the previous four. Whenever a
gesture is recognized, all the predictions are forgotten. This
procedure is just adopted in the robotic use-case described in
section IV-C.

IV. EXPERIMENTS

A. Users and acquisition conditions

Four healthy, able-bodied, right-handed users (three males
and one female) aged 29.4 ± 4.3 years with body mass index
21.6 ± 1.8 kg/m2 participated in this study. They performed
the gestures in four stages. On a first stage, 15 samples of
a gesture class were collected with the user standing. The
user rested for a short time between each collected sample.
After that, on a second stage, the user seated in a chair

performed the same gesture for more 15 times. The procedure
was repeated again with the user standing in a third stage and
sitting in a fourth stage. In total, 60 samples from each class
were collected in each acquisition session having each user
rested for 5 minutes between acquisitions of different classes.
The user’s right-arm, the one used to perform gestures, was
randomly positioned in four different slopes 0º, 45º, 90º and
135º during gesture acquisition. Jochumsen proved that arm
slope has strong influence in arm gesture recognition captured
by sEMG [5]. This procedure was followed by each user once
a day, for each class, during five uninterrupted days. Each
user performed his/her gestures at different times of the day
in order to capture different conditions the device is subjected
and device behavior throughout the day which affects sEMG
signal. The recording procedure was executed with the user
holding each gesture during a non-fixed time, higher than the
sliding-window size, and resting for a short time after each
recording. Each sample was recorded only when a key was
pressed on a keyboard, so there were no transition samples
recorded that had to be discarded. Following this procedure,
two datasets were produced one to train all classifier models
and other one to test classifier models [24].

B. Classes/Gestures

Six hand/wrist gestures are considered in this study. The
first five gestures are valid gestures: fist, finger spread, wave
in, wave out and double tap, Fig. 3. The sixth gesture from
the gesture library referred to as neutral is the natural posture
of the hand of the user when no significant muscle activity is
detected (rest). Whereas this gesture must be eliminated with
the segmentation process (invalid pattern), it is also known
by the recognition process in order to confer more robustness
to the system (section III-G). There is a seventh gesture that
composes the gesture library (non-gesture). This last class is a
generical gesture that intends to represent all gestures that are
possible to be performed by a user and are different from the
six gestures previously mentioned. The idea of using a class
to represent all unknown gestures was successful proposed to
recognize gestures from upper-limb human body, captured by
IMUs [25].

C. Robotic use-case

In order to prove that the prototype device is reliable
for industrial use, a simple use-case was created. This use-
case consists in a user performing one of the five valid
gestures, and when it is recognized, a command is sent to
a collaborative robot. In turn, the robot executes an industrial
task, associated to that particular gesture, it can be a simple
robot movement, open or close a gripper, turn a digital input
on or off, or initialize a collaborative task whose robot moves
by compliance between human hand contact and the robot
itself [26], [27].

In this real scenario each valid gesture was performed by
each user 20 times each one. On the other hand, the rest
gesture and the non-gesture were performed unknown number
of times. Anyway, when one of these gestures was recognized,



Fig. 2: CNN classification model used to gesture recognition.

Fig. 3: Six gestures: G1 – Fist; G2 – Finger spread; G3 –
Wave in; G4 – Wave out; G5 – double tap; and G6 – Rest.

it was registered. The test scenario is presented in Fig. 4
in which the collaborative robot and the sEMG prototype is
highlighted.

V. RESULTS AND DISCUSSION

Two sub-datasets with 2400 gestures each were created from
the two main datasets [24]. While one of the datasets is just
used to train the k-NN algorithm, the other sub-dataset is used
to test both algorithms used for the segmentation process.
Each sub-dataset is composed by the 1200 samples of the
gesture rest (invalid pattern) and from 1200 samples randomly
extracted from the six other classes (valid pattern). The data
are taken from the main dataset that satisfy training or testing
purposes. Table I displays the results of both algorithms used
for the segmentation process. Both algorithms present good
performance, with the threshold algorithm outperforming with
97 % accuracy, while the k-NN algorithm presents 92 %
accuracy.

All data from the two main datasets were used to train
and test the recognition algorithm, depending on its purpose.
The test results for the classifier used in the recognition
process are displayed in Table II. The suggested recognition
process was tested with the test dataset reaching a high overall
classification accuracy of 99 %. The results presented in Table
II represent the recognition of each gesture performed once.
The second approach that just accepts a gesture as recognized
when it was recognized 4 times in 5 recognition trials was just
used in the online tests, i.e. the results presented in Fig. 5 and
Table III.

The online tests carried out by interfacing with an industrial
collaborative robot, in which the users performed 20 valid
gestures of each gesture belonging to the library of gestures,
resulted in the accuracies displayed in Fig. 5. The overall
accuracy reached in these online tests was 95 %. This is a good
result because it is in-line or is higher than the results displayed

Fig. 4: Test scenario with collaborative robot and sEMG
prototype.

in recent similar studies [4], [5], [11]. Other good point
presented by the proposed solution was the system capacity
in reject/identify non-valid-gestures (classification of rest (G6)
and non-gesture). Additionally, when a gesture performed by
a user was wrongly recognized, it was not recognized as other
valid gesture, as shown in Table III. This suggests the solution
presents robustness and feasibility to be used in industrial
scenarios.

Notice that the good performances achieved in the offline
tests, which made use of data belonging to the testing dataset,
was not reached by data captured and processed (recognized)
online. Anyway, this kind of approach must be followed in
order to compare with the results of other studies because
all of them follow the same approach. The reason for the
higher performance is because when the data are provided
from a dataset, a data discrimination has already been done,
and the database practically just contains useful information
(effective data about gestures). For example, the transition
between two gestures does not belong to the database. As
a transition is more challenging to exclude from a pattern, as
well as more challenging to classify as non-pattern (given the
enormous number of non-patterns that can exist in relation to
the ones belonging to the training dataset), the classifier work
is facilitated when non-patterns are not tested or all data about
a gesture is contained in a data-stream.

The achieved results proved the viability of the algorithms
and procedures proposed in this study. The good robustness
presented by the system can be attributed to the high channel
density to overcome variance in signal quality; electrode
placement; and electrode doffing and donning (the contact
conditions between the electrodes and the skin could possibly
change). Other issues that the proposed solution has to deal
with are confounding factors including dynamic arm postures,
force variations, limb posture, and control arm alterations.



TABLE I: CONFUSION MATRIX FOR SEGMENTATION
PROCESS.

True class
Predicted class

Threshold algorithm k-NN algorithm

Invalid
pattern

Valid
pattern

Invalid
gesture

Valid
pattern

Invalid
pattern 1138 62 1087 113

Valid
pattern 14 1186 76 1124

TABLE II: CONFUSION MATRIX FOR RECOGNITION
PROCESS.

True class Predicted class

G1 G2 G3 G4 G5 G6 Non-gesture

G1 1196 2 2

G2 1198 2

G3 2 1198

G4 2 1198

G5 1198 2

G6 1159 24

Non-gesture 7 2 11 11 11 1158

VI. CONCLUSION

In order to overcome the challenges imposed by online
sEMG-based gesture recognition, a novel procedure and an
algorithm for data discrimination were proposed. In addition,
a recognition algorithm based on CNN was also suggested.
The combination of both algorithms demonstrated to be good
outcomes from this study since the high recognition accuracy
shown by the tests. A novel sEMG sensor prototype was
used in this study, providing its benefits to the solution
namely, high-density sensory capturing which cover a large
muscular region and consequently more data about gestures.
Seven classes of gestures were proposed, in which five classes
represent five valid gestures, one class represents human
inactivity (rest/invalid pattern), and one last class represents
all gestures different from the previous mentioned six gestures
(non-gestures).

The proposed segmentation process allows the identification
and exclusion of many rest gestures (invalid patterns) and
discrimination of frames, which ones contain muscular activity
to be reused in a next gesture recognition trial. Thus, the
segmentation process seems to provide high robustness to the
solution. The frame discrimination provides gesture samples
with all or almost all their data frames about a gesture
to a recognition process, facilitating the subsequent gesture
recognition.

A real scenario was used to test the solution having the
results presented high recognition accuracy, about 95 %.
This result overcomes similar studies from the literature and

TABLE III: CONFUSION MATRIX RESULT FROM AN
ONLINE TEST PERFORMED BY ONE OF THE USERS.

True class Predicted class

G1 G2 G3 G4 G5 G6 Non-gesture

G1 20

G2 19 1

G3 20

G4 18 2

G5 19 1

G6 243

Non-gesture 6

Fig. 5: Gesture recognition accuracy for the five valid gestures
tested in online operation.

suggests the use of a solution like the one proposed could be
in industrial use soon.

This study will proceed performing tests with larger ges-
ture libraries and the data fusion with other sensors will be
pondered.
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