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Abstract 

The ability of efficient and fast calculation of the minimum distance between humans and robots is vitally important for realizing 
a safe human robot interaction (HRI), where robots and human co-workers share the same workspace. The minimum distance is 
the main input for most of collision avoidance methods, HRI, robot decision making, as well as robot navigation. In this study it 
is presented a novel methodology to analytically compute of the minimum distance between cylindrical primitives with spherical 
ends. Such primitives are very important since that there geometrical shape is suitable for representing the co-worker and the 
robots structures. The computational cost of the minimum distance between 𝑛 cylinders is of order 𝑂(𝑛!). In this study QR 
factorization is proposed to achieve the computational efficiency in calculating the minimum distance mutually between each 
pair of cylinders. Experimental tests demonstrated the effectiveness of the proposed approach.  
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1. Introduction 

The presence of robots around us will become a reality in the near future. However, they need to become safe in 
the way they interact with us. Thus, safety is a major concern in collaborative robotics, since robots and humans will 
coexist and share the same workspace. A collaborative robot shall be capable in real-time of acquiring sensor data 
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related to the robot surrounding environment. These data are usually used to calculate the proximity between the 
robot and the obstacles/humans in the surrounding environment. This proximity is best measured by the minimum 
distance, which is the main input for most of the algorithms related to: collision avoidance, collaboration/interaction, 
robot decision making, as well as mobile-robots guidance and navigation. 

Capturing accurate information from multi-layer sensor systems is still difficult to achieve. To improve accuracy 
existing sensing systems rely on markers. In addition, to compute the minimum distance the obstacles/humans need 
to be approximated by primitive geometries in a non-trivial process. There are different methods to compute the 
minimum distance between primitive geometries, which depend on the geometry itself.  

In this study a novel methodology for computing the minimum distance between geometric primitives, as 
cylinders, is proposed. The cylinders are chosen because they give a good approximation for representing humans, 
robots and objects in general. The method is analytical and utilizes QR factorization. This is particularly important 
because an accurate representation of a robot environment by geometric primitives requires a relatively large 
number of geometric elements with continuous and real-time computing related with the minimum distance between 
all the static and dynamic elements in the environment. For example, for a robotic environment represented by n 
geometric primitives, it will requires  𝑛(𝑛 − 1)/2  invocations of minimum distance calculation. Although the 
number of calculations can be reduced by ruling out by hand the unnecessary calculations by specifying the object's 
between which collisions cannot occur, still the number of remaining calculations is considerable, which emphasis 
the fact that a fast algorithm is important for efficient implementation of intelligent robotic systems. 

2. State of the art 

Several researchers proposed different methods for representing humans and robots geometry. Convex 
polyhedrons were proposed in [1] for representing two PUMA 560 manipulators. In  [2] ellipses and spheres were 
used to represent the robot and obstacles. A computationally efficient way to represent the robot and obstacles is to 
use primitive shapes [3], [4]. A similar convention was proposed in [5]. In [6] a humanoid is represented by 
cylinders since that such representation allows for analytical and efficient calculation of the minimum distance 
which is used to perform self-collision avoidance. In [7] GPU was used to calculate the minimum distance between 
objects that are represented by meshes, such method gives precise representation of objects, nonetheless this method 
is very hard to implement. The skeletal algorithm proposed in [8], represents a framework for self-collision 
avoidance in humanoids, in this method the robot is represented by spheres and cylinders. A robot represented by 
twelve bounding boxes (mainly cylinders) was proposed in [4]. This representation demonstrated vital for an offline 
path planning algorithm proposed by the authors. An advanced collision map for performing (point to point motion) 
PTP with collision avoidance capability in a robotic cell with two robotic manipulators is presented in [9]. Each 
robot is represented by four cylinders, giving a best fit and a tight representation of the robot. From the previous 
studies, Figure 1, it can be concluded that the choice of the geometric primitive to represent the elements in a given 
environment is important for the accuracy of the representation and the computational cost required to compute the 
minimum distance. 

 

Figure 1 (a) Robot and human represented by spheres [16], (b) robots represented by segments of lines with spheres/cylinders 
swept onto them [3], and (c) humanoid robot represented by cylinders [6]. 
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After the geometric representation it is required to effectively compute the minimum distance between such 

geometric primitives, in continuous and real-time. Several researchers have proposed solutions for this purpose. 
Chapter 3 of [8] describes a method for minimum distance computation between two cylinders with spherical ends. 
Also in [10] the authors presented an algebraic method for this matter. Another method for computing the minimum 
distance between cylinders with flat ends was proposed in [11]. Nevertheless, the aforementioned methods are 
lengthy because they consider the different configurations in which two cylinders might collide with each other. In 
[11] seventeen different configurations are considered and in [10] nine different configurations are considered. A 
method to determine the minimum distance between multiple known (geometry, position, orientation, and 
configuration) and multiple unknown objects within a camera image is in [12]. The distance is estimated by 
searching for the largest expansion radius where the projected model does not intersect the object areas classified as 
unknown in the camera image. A method for computing the minimum translational distance based on the Gilbert-
Johnson-Keerthi algorithm between two spherically extended polytopes is introduced in [13]. A novel method to 
evaluate distances between dynamic obstacles using multiple depth cameras is in [14]. A depth-space oriented 
discretization of the Cartesian space is introduced (representing the workspace monitored by a depth camera), 
including occluded points. 

3. Representation of objects 

For realizing a safe collaborative robotic cell, with collision avoidance capability, the software shall implement 
an accurate and efficient way to represent the physical objects numerically, this is best achieved by using cylinders, 
while cylinders give a good representation of the human body, and the structure of the robot, yet due to their 
geometry it is efficient to calculate the minimum distance between cylinders in an analytical, accurate, way. 

 

4. Analytical solution for minimum distance between cylinders 

It is presented in this section a novel method for calculating the minimum distance between two cylinders, the 
proposed method gives analytical solution and is simple to implement. In Figure 3 it is shown two line segments 
representing the axes of two cylinders and their associated common normal. Each segment can be defined by two 
vectors in base frame, one at the beginning of the segment and the other at the end of that segment. Let's designate 
the position vectors defining the end points of the primitive segment of the first cylinder by 𝑝! and 𝑢!, and the 
position vectors defining the end points of the primitive segment of the second cylinder by  𝑝! and 𝑢!. Then, we can 
define two vectors 𝒔!  and 𝒔! as: 

 

Figure 2 (a) Worker covered by cylinders (b) KUKA iiwa robotic manipulator represented by 
cylinders. 
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Figure 3 Minimum distance between two line 
segments representing two cylinders 

 𝒔! = 𝒖! − 𝒑! (1) 
And 
 

 𝒔! = 𝒖! − 𝒑! (2) 
 
 

 
 
We considered two points of interest on the two primitive segments. Those points are represented relative to base 

frame by two vectors, 𝒓!  and 𝒓!  , while the parameterized equation of  𝒓!  is: 
 
 
 

𝒓! = 𝒑! + 𝒏!𝜆! 
 (3) 

And the parameterized equation of  𝒓!  : 
  

𝒓! = 𝒑! + 𝒏!𝜆! 
 (4) 

While 𝜆!  and 𝜆! are scalar parameters, those parameters have a value in the range from zero to one, when the points 
they represent are confined in-between the two ends of the primitive segment.  
 
The difference vector ∆𝒓, between 𝒓! and  𝒓! is: 
 

 ∆𝒓 = 𝒓! − 𝒓! (5) 
 
   

When the two line segments, L!  and L!, are not parallel, the problem of calculating the minimum distance and their 
associated points renders to a minimization problem of the norm of vector ∆𝒓 : 
 

 min ∆𝒓  = min 𝒑! + 𝒏!𝜆! − 𝒑! + 𝒏!𝜆!  (6) 
 
Thus, the minimum distance calculation between two line segments reduces to the following optimization problem: 
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min |∆𝒓|  = min 𝒏! −𝒏!

 𝜆!
𝜆!

+ 𝒑! − 𝒑!  (7) 

Or in a more abstract form: 
  

 min ∆𝒓  = min 𝐀𝒙 − 𝒚  (8) 
 
 
Where matrix 𝐀  is the concatenation of vectors 𝒏𝟐 and −𝒏!. 
 
And vector 𝒚  is: 

 𝒚 = 𝒑! − 𝒑!  (9) 
 
 
We can rewrite the optimization function in the following equivalent quadratic form: 
 

 min (𝑓) = min 𝐀𝒙 − 𝒚 ! 𝐀𝒙 − 𝒚  (10) 
 
 
And the problem can be viewed as minimizing the previous function, subject to the following constrains: 
 

 0 < 𝑥! < 1 (11) 
 
And 
 

 0 < 𝑥! < 1 (12) 
 
Where 𝑥! and 𝑥! are the components of the vector 𝒙 . 
 
We can reformulate the function 𝑓 by performing 𝐐𝐑 factorization on matrix 𝐀. Then, the optimization function can 
be rewritten: 
 

 𝑓 = 𝐐𝐑𝒙 − 𝒚 ! 𝐐𝐑𝒙 − 𝒚  (13) 
 
While 𝐐 is 3×2 orthogonal matrix, and 𝐑 is 2×2 upper triangular matrix. The previous function can be manipulated 
by taking advantage of the fact that 𝐐!𝐐 = 𝟏!. Thus, after manipulation and fixing we find that minimizing (10) is 
equivalent to the following:  
 

 min (𝑓) = min 𝐑𝒙 − 𝐐!𝒚 ! 𝐑𝒙 − 𝐐!𝒚  (14) 
 
Or we can rewrite  
 

 min (𝑓) = min 𝒖!𝒖  (15) 
 
While 𝒖 is given by 
 

  𝒖 = 𝐑𝒙 − 𝐐!𝒚 (16) 
   

Using equation (16) the square region of feasible solutions is transformed into a parallelogram, so equation (15) 
signify that the solution to the optimization problem is the point of the parallelogram, Figure 4, closest to the origin.  
According to the relative position of the parallelogram and the origin, we can distinguish two different situations. In 
the first the origin is inside the transformed region, so the closest point of this region to the origin is the origin itself. 
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The second case occurs when the origin is outside the transformed region, in this case the solution is the point of the 
transformed region’s boundary closest to the origin. Let 𝒖𝒎𝒊𝒏 be the point of the transformed region closest to the 
origin, then the solution of the optimization problem in (15) is  
  

 𝒙𝒎𝒊𝒏 = 𝐑!𝟏 𝒖𝒎𝒊𝒏 + 𝐐!𝒚  (17) 
 
Then the minimum distance between the two cylinders 𝑑!"# is calculated from 
  

 𝑑!"# =  𝐀𝒙𝒎𝒊𝒏 − 𝒚 − 𝜌! − 𝜌! (18) 
 
While 𝜌! and 𝜌! are the radius of the first and the second cylinders respectively. 
 

 

 

5. Experimental results 

The proposed method was tested in a simulation of a collaborative robotic cell in which the robot avoids 
collisions with the human co-worker, Figure 5.  The simulation was implemented in the virtual reality simulator 
VREP, the control was implemented in MATLAB, the robot used is 6 DOF Fanuc manipulator, and is programmed 
to perform pick and place operation. In this system the robot and the co-worker are approximated by cylinders, using 
the proposed method the system finds the closest point of the robot to the co-worker and accordingly performs 
online trajectory readjustment of the end-effector using the potential field method [15], so that the collision 
avoidance between the co-worker and the robot is achieved. The distance between the human and robot is 
analytically computed using the proposed method. In these experiments the human was approximated by one 
cylinder while the robot was approximated by 2 cylinders. 
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Figure 4 Region of feasible solutions for the quadratic optimization problem before applying the transformation blue, and after 
the transformation red, in (a) the origin is inside the transformed region, in (b) the origin is outside the transformed region. 
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6. Conclusion 

This study presented a new method for calculating the minimum distance between cylinders with spherical ends. 
The proposed method is simple to implement, and gives an analytical solution to the problem. The minimum 
distance calculation problem was reformulated as a bounded variable optimization problem. For solving the 
optimization problem we performed an affine-transformation on the region of feasible solutions. This transformation 
was deduced from QR factorization, so that the feasible solutions region becomes a parallelogram, in other words 
remains convex. We showed that the solution to the optimization problem corresponds to the point of the 
parallelogram region closest to the origin. The effectiveness of the proposed method was demonstrated successfully 
in simulation, the minimum distance is used as input for a potential-field based collision avoidance algorithm as 
shown in the Experimental results section. 
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Figure 5 Demonstrates a sequence of photos of a VREP simulation for safe robotic cell, minimum distance 
calculation was performed using the proposed method. 
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