
  

  

Abstract— New and more natural human-robot interfaces 
are of crucial interest to the evolution of robotics. This paper 
addresses continuous and real-time hand gesture spotting, i.e., 
gesture segmentation plus gesture recognition. Gesture patterns 
are recognized by using artificial neural networks (ANNs) 
specifically adapted to the process of controlling an industrial 
robot. Since in continuous gesture recognition the 
communicative gestures appear intermittently with the non-
communicative, we are proposing a new architecture with two 
ANNs in series to recognize both kinds of gesture. A data glove 
is used as interface technology. Experimental results 
demonstrated that the proposed solution presents high 
recognition rates (over 99% for a library of ten gestures and 
over 96% for a library of thirty gestures), low training and 
learning time and a good capacity to generalize from particular 
situations. 

I. INTRODUCTION 

Reliable and natural human-robot interaction is a subject 
that has been extensively studied by researchers in the last 
few decades. Nevertheless, in most of cases, human beings 
continue to interact with robots recurring to the traditional 
process, using a teach pendant. Probably, this is because 
these “more natural” interaction modalities have not yet 
reached the desired level of maturity and reliability. 

It is very common to see a human being explaining 
something to another human being using hand gestures. 
Making an analogy, and given our demand for natural 
human-robot interfaces, gestures can be used to interact with 
robots in an intuitive way. Recent research in gesture spotting 
(gesture segmentation plus gesture recognition) aimed at 
applications in many different fields, such as sign language 
(SL) recognition, electronic appliances control, video-game 
control and human-computer/robot interaction. The 
development of reliable and natural human-robot interaction 
platforms can open the door to new robot users and thus 
contribute to increase the number of existing robots. 

A.  Interaction Technologies and Methods 
Different interaction technologies have been used to 

capture human gestures and behaviors: vision-based systems, 
data gloves, magnetic and/or inertial sensors and hybrid 
systems combining the technologies above. Factors such as 
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Figure 1.  The proposed system. 

the kind of application, the cost, reliability and portability 
influence the choice of a technology in detriment of another.  

Important work has been done in order to identify and 
recognize gestures using vision-based interfaces [1], for 
hand, arm and full-body gesture recognition [2], [3]. Vision-
based solutions have been used for real-time gesture spotting 
applied to the robotics field [4]. A recent study presents a 
motion tracking system combining vision, inertial and 
magnetic sensing for spatial robot programming using 
gestures [5]. An American SL word recognition system that 
uses as interaction devices both a data glove and a motion 
tracker system is presented in [6]. Another study presents a 
platform where static hand and arm gestures are captured by 
a vision system and the dynamic gestures are captured by a 
magnetic tracking system [7]. Inertial sensors have also been 
explored for different gesture-based applications [8], [9]. A 
major advantage of using vision-based systems in gesture 
recognition is the non-intrusive character of this technology. 
However, they have difficulty producing robust information 
when facing cluttered environments. Some vision-based 
systems are view dependent, require a uniform background 
and illumination, and a single person (full-body or part of the 
body) in the camera field of view.  

Magnetic tracking systems can measure precise body 
motion, but at the same time, they are very sensitive to 
magnetic noise, expensive and need to be attached to the 
human body. Inertial sensors and data gloves present a 
number of advantages: they are relatively cheaper, allow 
recognizing gestures independently of the body orientation 
and can be used in cluttered environments. Some associated 
negative features are the necessity to attach them to the 
human body and the incapacity to extract precise 
displacements. 

Information provided by interaction technologies have to 
be treated and analyzed carefully to recognize gestures. 
Several machine learning techniques have been used for this 
purpose, being that most of the current research in gesture 
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recognition relies on either artificial neural networks (ANNs) 
or hidden Markov models (HMM). Mitra and Acharya 
provide a complete overview of techniques for gesture 
pattern recognition [1]. ANN-based problem solving 
techniques have been demonstrated to be a reliable tool in 
gesture recognition, presenting very good learning and 
generalization capabilities [10]. ANNs have been applied in a 
wide range of situations such as the recognition of continuous 
hand postures from gray-level video images [11], gesture 
recognition having acceleration data as input [12], full-body 
motion recognition for robot teleoperation [13] and SL 
recognition [6]. The capacity of recurrent neural networks 
(RNNs) for modeling temporal sequence learning has been 
demonstrated [14]. Nevertheless, RNNs are still difficult to 
train. HMM are stochastic methods known for their 
application in temporal pattern recognition, including gesture 
spotting [15]. 

B.  Proposed Approach 
This paper presents a new gesture spotting solution using 

a data glove as interaction technology. This allows gesture 
recognition regardless the user’s hand pose. Gesture patterns 
are recognized in continuous (not separately) and in real-time 
recurring to ANNs specifically adapted to the process of 
controlling an industrial robot (supervised learning). 
Continuous gesture recognition because it is the natural way 
used by humans to communicate (when using gestures), in 
which communicative gestures (with an explicit meaning) 
appear intermittently with non-communicative gestures 
(transition gestures, emotional expressions, idling motion, 
etc.), with no specific order. In this way, it is proposed an 
architecture with two ANNs in series to recognize 
communicative and non-communicative gestures. Transitions 
between gestures are analyzed and a solution based on ANNs 
is proposed to deal with them. Real-time because when a user 
performs a gesture he/she wants to have response/reaction 
from the robot with a minimum delay. This takes us to the 
choice for static gestures rather than dynamic gestures. In 
fact, real-time gesture recognition imposes the use of data up 
to the current observation without have to wait for future 
data. This is not what happens when dynamic gestures are 
recognized as they are represented as a sequence of feature 
vectors (frames). 

Experimental results demonstrated that the proposed 
solution presents relatively good recognition rates (RRs), low 
training and learning time, a good capacity to generalize, it is 
intuitive to use and able to operate independently from the 
conditions of the surrounding environment. Fig. 1 shows a 
scheme of the proposed system. The data glove is a 
CyberGlove II. It has integrated twenty-two resistive sensors 
for joint-angle measurements ( )1 2 22, ,...,x x x  that define the 
hand shape in each instant of time t, and a two state button. 

II. GESTURE SPOTTING 

Each person can use different gestures (in this case hand 
gestures) to express the same desire or feeling. In this 
context, such gestures are associated to robot commands. To 
avoid ambiguities, and considering our purpose (pattern 
recognition), each static gesture should be different from 
each other. For the first tests a role of ten different hand 

gestures (shapes) were selected, Table I. In this way, we have 
ten hand static gestures associated to nineteen robot 
commands. This is possible because we can make use of the 
two state button of the glove and associate the same gesture 
to two different robot commands just by changing the button 
state. After a gesture is recognized, the control command 
associated to that gesture is sent to the robot. 

TABLE I.  GESTURES AND ASSOCIATED ROBOT COMMANDS 

Hand shape Button ON Button OFF 

The robot end-effector 
stops (stop) 

The robot end-effector stops 
(stop) 

Linear motion in 
positive x axis (X+) 

Rotation about the x axis in 
positive direction (RX+) 

Linear motion in 
negative x axis (X-) 

Rotation about the x axis in 
negative direction (RX-) 

Linear motion in 
positive y axis (Y+) 

Rotation about the y axis in 
positive direction (RY+) 

Linear motion in 
negative y axis (Y-) 

Rotation about the y axis in 
negative direction (RY-) 

Linear motion in 
positive z axis (Z+) 

Rotation about the z axis in 
positive direction (RZ+) 

Linear motion in 
negative z axis (Z-) 

Rotation about the z axis in 
negative direction (RZ-) 

G8

Save an end-effector 
pose Save an end-effector pose 

Return to saved pose Loop 

Vacuum ON Vacuum OFF 

 

A. Gesture Segmentation 
Gesture segmentation is the task of finding the start and 

the end of a communicative gesture from continuous data. 
Since the duration of a gesture (static or dynamic) is variable 
this can be a difficult task. Several approaches have been 
explored to deal with the problem of gesture segmentation, 
some of them simply based on the definition of a threshold 
value for gesture data, others with more complexity [16]. 
Some recent studies approach the problem of movement 
epenthesis recognition in SL recognition (inter gesture 
transition periods) [17]. 

The proposed solution is a simple one, with the concern 
of achieve a spotting system with real-time characteristics. 
The method consists in analysing each frame from the glove 
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1 2 22( , ,..., )i ix x xζ =  and verify if it corresponds to a 
communicative gesture or not. This is possible using ANNs 
which are not processor intensive when classifying actual 
data after the training process. Nevertheless, some problems 
can occur, for example when during the transition from a 
communicative gesture to another one, a non-communicative 
gesture is classified as a communicative gesture. Fig. 2 shows 
that during the transition from Gesture 5 to Gesture 6 the 
non-communicative gestures in Fig. 2 (i) and Fig. 2 (j) can be 
in certain circumstances wrong classified as Gesture 7. This 
depends on the way the user performs the transition from one 
gesture to another. Fig. 3 shows the readings (average values 
of ten tests and associated standard deviation) from three 
glove sensors (x1, x3 and x10) in the scenario shown in Fig. 2. 
If with three sensor readings it is relatively simple to 
manually locate the region “Gesture 5”, “non-communicative 
gestures” and “Gesture 6”, for twenty-two readings the 
process appears more complicated. Owing to its nature, 
ANNs can be a good solution to deal with the scenario 
exposed above. 

 
Figure 2.  Transition via non-communicative gestures from Gesture 5 to 

Gesture 6. 
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Figure 3.  Data glove sensor readings in the transition from Gesture 5 to 

Gesture 6. 

B.  Gesture Recognition 
Gesture recognition is the task of matching the segmented 

gestures against a library of predefined gestures. The main 
goal is to recognize gesture patterns by creating an ANN with 
good learning capabilities and with the ability to generalize 
and produce results from all kinds of input data from the 
glove, even if they are relatively different from the trained 
input patterns. The backpropagation algorithm is used as a 
learning/training algorithm to determine the weights of the 
network. 

The proposed ANN architecture is a feedforward one 
with only one hidden layer, Fig. 4. It has forty-four neurons 
in the input layer, forty-four in the hidden layer and ten in the 
output layer. Forty-four neurons in the input layer 
corresponding to two consecutive frames (t and t-1) or non-
consecutive (t and t-n, with 1n ≠ ) from each sensor of the 
glove. Since data from the glove are actualized at each 15 
milliseconds this solution does not affect the real-time nature 
of the system if the n value remains low. On contrary, we 
have gone from a situation where gestures can be considered 
static to a situation in which gestures can be considered 
dynamic (a sequence of static gestures). In this situation the 
real-time character of the system can be lost. Forty-four 
neurons in the hidden layer because after several experiments 
it was concluded that this solution presents a compromise 
between the computational time required to train the system 
and the achieved RR. Finally, the ten neurons in the output 
layer correspond to each different gesture. 

( )1 1x sensor t n= −

( )2 2x sensor t n= −

( )22 22x sensor t n= −

( )23 1x sensor t=

( )44 22x sensor t=

1 1y Gesture→

10 10y Gesture→

2 2y Gesture→

3 3y Gesture→

 
Figure 4.  ANN architecture. 

Considering a multi-layer ANN with n layers ( 3n ≥ ), 
and being ny  the neurons of the last layer, 1y  the neurons of 
the input layer and iy  the neurons of the thi  layer. 
Considering also that in each layer there are k neurons and 
the desired output is T. Each layer can have a different 
activation function iϕ . The addition of the squares of the 
differences between the current calculated outputs and 
desired outputs will be the error function to minimize: 

 ( )2

1

1
2

nm
n

k k
k

E T y
=

= −∑  (1) 

Where nm  represents the number of neurons, m, in a layer n. 
The backpropagation algorithm is employed to find a local 
minimum of the error function E. The network is initialized 
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with randomly chosen weights. The gradient of the error 
function is computed with respect to the weights W and bias 
b, and used to correct the initial weight values. Finally, the 
output i

ky of a neuron k in layer i is calculated by: 

 ( )
1

1
,

1

im
i i i i i i i
k k k j j k

j
y v W y bϕ ϕ

−

−

=

⎛ ⎞
= = +⎜ ⎟⎜ ⎟

⎝ ⎠
∑  (2) 

The weights can be adjusted according to the following: 

 , , ,( 1) ( )i i i
k j k j k jW n W n W+ = + Δ  (3) 

 1
,

,

i i i
k j k ki

k j

EW y
W

α αδ −∂Δ = − =
∂

 (4) 

Where [0,1]α ∈ℜ  is the learning rate. For the bias: 

 i i
k kb αδΔ =  (5) 

Being δ  given by: 

 
( ) ( )

( ) ( )
1

1 1
,

1

2
i

n i i
k k k

i
mk i i i i

j k j k
j

T y v if i n

W v if i n

ϕ
δ

δ ϕ
+

+ +

=

⎧ − =
⎪⎪= ⎨⎛ ⎞

≤ <⎪⎜ ⎟
⎪⎝ ⎠⎩
∑

 (6) 

The activation function is an asymmetric sigmoid: 

 ( ) 1
1 vv

e
ϕ −=

+
 (7) 

And its derivative: 

 ( ) ( ) ( )1v v vϕ ϕ ϕ= −⎡ ⎤⎣ ⎦  (8) 

The momentum term can be introduced into the training 
of the ANN to increase the training speed and reduce 
instability, usually, [0.1,1]β ∈ℜ . Considering that p represents 
an iteration of the training process, the updated weight value 
for any connection can be calculated by the following: 

 ( )1 1 2p p p pW W W W Wβ− − −= + Δ + −  (9) 

C.  Training and Recognizing Non-Communicative Gestures 
Since we are proposing an architecture with two ANNs in 

series to recognize communicative and non-communicative 
gestures (non-gestures), the system has to be trained with 
both kinds of gesture. This can be an important action to 
improve gesture segmentation by reducing false alarm 
situations and increasing recognition reliability. Non-gestures 
can be identified, trained and used to reject similar outlier 
patterns during gesture spotting. Non-gesture patterns are 
manually identified in two cases:  in the transition between 
communicative gestures or when a false gesture is similar to 
a true one. This process may take a long time as it is 
necessary not only to identify such gestures but also to train 
them. Few researchers have addressed gesture recognition 

recurring to non-communicative gestures because it is 
difficult to model non-gesture patterns. 

Some questions related with gesture segmentation arise: 
how to model non-gestures? And what should be the ANN 
configuration in this scenario? For the first question the 
answer is a simple one, non-gestures are manually identified 
by analyzing the transitions between communicative 
gestures. For the second question we propose to use an 
architecture with two ANNs in series, Fig. 5. Since the actual 
classification of a pattern is performed in few milliseconds, 
this solution do not affects the real-time nature of the system. 
The ANN to recognize non-communicative gestures (the 
second ANN) has the same number of input and hidden 
neurons of the ANN to recognize communicative gestures 
(the first ANN), Fig. 4. The number of output neurons 
depends on the number of trained non-gestures. If in the first 
network an input pattern is not classified as a communicative 
gesture the process stops here, the pattern is classified as a 
non-communicative gesture and the system does not send any 
commands to the robot. On contrary, if the first network 
classifies an input pattern as a communicative gesture the 
same input pattern is used to feed the second ANN. In this 
case two situations can occur: 

• The second ANN classifies the input pattern as a 
non-communicative gesture. Since it was established 
that this second ANN has priority over the first, we 
are in the presence of a non-communicative gesture. 

• The second ANN does not classify the input pattern 
as a non-communicative gesture. In this case we are 
in the presence of a communicative gesture. 

III. EXPERIMENTS 

Experimental tests allow to evaluate the system 
performance in terms of RR, training time (the time the user 
takes to demonstrate gestures in the training phase) and the 
computational time (the time the computer takes to train the 
system by adjusting the ANN weights). In a first set of 
experiments the system is tested with continuous data, real-
time and with a sequence of ten gestures (Gesture 8, Gesture 
2, Gesture 3, Gesture 4, Gesture 5, Gesture 6, Gesture 7, 
Gesture 1, Gesture 9 and Gesture 10). This sequence was 
chosen because it incorporates all the ten hand gestures and 
allows to analyze the effect of non-communicative gestures 
in the transition. To establish the RR for each gesture the 
sequence above is performed 100 times. The computer has a 
processor Intel® Core™ 2 Duo E8400 with a memory of 
1.75 GB. The ANNs are trained 10000 times, with 0.1α =  
and 0.1β =  (these parameters are obtained by trial-and-error 
and are valid for both ANNs). 

A.  Tests 
Test 1: This test was performed with the ten gestures in Table 

I, and recurring to an ANN having as input raw data from the glove 
sensors captured in two consecutive time intervals (frames), t-1 and 
t. Similar data (obtained similarly) are used as training patterns for 
the ANN, in which each different gesture is trained 20 times. The 
ANN to recognize non-communicative gestures is not used. 
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Figure 5.  System architecture. 

 
Figure 6.  Hand static gestures. 

Test 2: Since in Test 1 the glove sensor reading values in 
instants of time t-1 and t are similar, we are not exploring the 
potentialities of the proposed ANN architecture. This test is 
performed having the network input patterns captured in instants of 
time t-3 and t (45 milliseconds between these two intervals – four 
frames). This configuration do not affects the real-time nature of 
the system and allows controlling the transition from a gesture to 
another. The ANN to recognize non-communicative gestures is not 
used. 

Test 3: Similar to Test 2 but considering the ANN to recognize 
non-gestures. The network is trained with two non-communicative 

gestures in the transition from Gesture 5 to Gesture 6 and one non-
communicative gesture in the transition from Gesture 6 to Gesture 
7. These transitions were chosen because it is here between Gesture 
5, Gesture 6 and Gesture 7 that the classification problems occur. 
Thus, in this case the ANN to recognize non-gestures has three 
output neurons. 

Test 4: This test is similar to Test 3 (keeping the same three 
trained non-gestures), but, in this case for a total number of thirty 
gestures, ten presented in Table I more twenty gestures in Fig. 6. 

B. Results and Discussion 
For the tests presented above, the time spent in the 

training of the network (training time and computational 
time) is in Table II. The RR for each gesture is presented in 
Table III. In Test 1 the system achieved an average RR of 
98.4% with relatively short training time (9 minutes). 
Nevertheless, it was a deception to verify that Gesture 6 is 
only recognized 89 times in 100. In general, in this type of 
situation three different errors can be pointed out: 

• Substitution errors, when an input gesture is 
classified in a wrong category. 

• Insertion errors, when the system reports a non-
existent gesture. 

• Deletion errors, when the system fails to detect a 
gesture existing in the input stream. 

The low RR in Gesture 6 occurs mainly due to substitution 
errors. This is because during the transition from Gesture 5 to 
Gesture 6, sometimes, the system classifies the non-
communicative gestures as to be Gesture 7 instead Gesture 6, 
Fig. 2. In practice, when this situation occurs the user feels a 
small oscillation in the robot because in the transition from 
Gesture 5 (Y-) to Gesture 6 (Z+) by moments the system 
recognizes Gesture 7 (Z-) and the robot reacts to that event. 
This issue can be solved by imposing a minimum time period 
that each communicative gesture should be active. 

In relation to Test 2, the system achieved an average RR 
of 99.3% (96% for Gesture 6) with a total training time of 11 
minutes. The training time is increased when compared to 
Test 1. However, the RR appears to be excellent. 

In Test 3 the system achieved an average RR of 99.8% 
with a total training time of 15 minutes. Thus, this ANN-
based solution using models of non-communicative gestures 
improves gesture spotting (by reducing false alarm gestures) 
and increases the recognition reliability. 

Finally, in Test 4, we have a global RR of 96.3% for a set 
of thirty static gestures recognized in continuous mode and in 
real-time. This is a very good result when compared with 
similar studies in the field [6], [16]. If we are dealing with a 
relatively high number of gestures (and non-gestures) the 
selection and training of non-gestures can be a very difficult 
task. Only a correct identification of non-gestures (ensuring 
that non-communicative gestures are not similar to 
communicative gestures) can improve the overall RR of the 
system. On contrary, the system can behave worse than when 
only communicative gestures are trained and recognized. Fig. 
7 shows the robot end-effector being controlled by means of 
gestures. 
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TABLE II.  TIME SPENT IN THE TRAINING PROCESS 

Process  
↓ 

Time [minutes] 
Test 1 Test 2 Test 3 Test 4 

Training time 5 5 6 20 

Computational time 4 6 9 140 

Total time 9 11 15 160 

TABLE III.  RR FOR EACH DIFFERENT GESTURE 

Gesture  
↓ 

Recognition rate of gestures [%] 
Test 1 Test 2 Test 3 Test 4 

G8 100.0 100.0 100.0 
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G2 100.0 100.0 100.0 

G3 100.0 100.0 100.0 

G4 98.0 100.0 100.0 

G5 98.0 100.0 100.0 

G6 89.0 96.0 98.0 

G7 100.0 97.0 100.0 

G1 100.0 100.0 100.0 

G9 99.0 100.0 100.0 

G10 100.0 100.0 100.0 

Classification acuracy 98.4 99.3 99.8 96.3 

 

X+

Y-Y+

X-

 
Figure 7.  Examples of robot motion actions controlled by means of hand 

gestures (see the accompanying video). 

IV. CONCLUSIONS AND FUTURE WORK 

A method for real-time and continuous hand gesture 
spotting has been presented. The proposed solution allows 
users to teach robots in an intuitive way, using gestures. 
Gesture patterns are classified using ANNs, which can be 
trained with communicative and non-communicative 
gestures. Experimental results report very good RRs (99.8% 
for a library of ten gestures and 96.3% for a library of thirty 
gestures), low training and learning time, a good capacity to 
generalize, and ability to operate independently from the 
conditions of the surrounding environment. 

Future work will seek to improve the achieved RR. This 
can be done by adding more components to the actual 
interaction technologies, the data glove can be combined with 
inertial and magnetic sensing. New methods dedicated to the 
automatic generation of non-gestures will be studied, 
especially an approach using random gestures as non-
communicative gestures. 
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