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Abstract
Purpose – Most industrial robots are still programmed using the typical teaching process, through the use of the robot teach pendant. This is
a tedious and time-consuming task that requires some technical expertise, and hence new approaches to robot programming are required.
The purpose of this paper is to present a robotic system that allows users to instruct and program a robot with a high-level of abstraction from the robot
language.
Design/methodology/approach – The paper presents in detail a robotic system that allows users, especially non-expert programmers, to instruct and
program a robot just showing it what it should do, in an intuitive way. This is done using the two most natural human interfaces (gestures and speech),
a force control system and several code generation techniques. Special attention will be given to the recognition of gestures, where the data extracted
from a motion sensor (three-axis accelerometer) embedded in the Wii remote controller was used to capture human hand behaviours. Gestures
(dynamic hand positions) as well as manual postures (static hand positions) are recognized using a statistical approach and artificial neural networks.
Findings – It is shown that the robotic system presented is suitable to enable users without programming expertise to rapidly create robot programs.
The experimental tests showed that the developed system can be customized for different users and robotic platforms.
Research limitations/implications – The proposed system is tested on two different robotic platforms. Since the options adopted are mainly based
on standards, it can be implemented with other robot controllers without significant changes. Future work will focus on improving the recognition rate
of gestures and continuous gesture recognition.
Practical implications – The key contribution of this paper is that it offers a practical method to program robots by means of gestures and speech,
improving work efficiency and saving time.
Originality/value – This paper presents an alternative to the typical robot teaching process, extending the concept of human-robot interaction and co-
worker scenario. Since most companies do not have engineering resources to make changes or add new functionalities to their robotic manufacturing
systems, this system constitutes a major advantage for small- to medium-sized enterprises.
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1. Introduction

1.1 Motivation

Programming an industrial robot by the typical teaching

method, through the use of the robot teach pendant is a

tedious and time-consuming task that requires some technical

expertise. In industry, this type of robot programming can be

justified economically only for production of large lot sizes.

Hence, new approaches to robot programming are required.

Contrary to the highly intelligent robots described in

science fiction, most current industrial robots are “non-

intelligent” machines that work in a controlled and well-

known environment. Generally, robots are designed,

equipped and programmed to perform specific tasks, and

thus, an unskilled worker will not be able to re-program the

robot to perform a different task.
The goal is to create a methodology that helps users to

control and program a robot with a high-level of abstraction

from the robot language. Making a demonstration in terms of
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high-level behaviours (using gestures, speech, etc.), the user

should be able to demonstrate to the robot what it should do,
in an intuitive way. This type of learning is often known as

programming by demonstration (PbD). Several approaches
for PbD have been investigated, using different input devices,

manipulators and learning strategies (Dillmann, 2004; Aleotti
et al., 2004; Pires et al., 2009). The demand for new and

natural human-machine interfaces (HMIs) has been
increasing in recent years, and the field of robotics has
followed this trend (Cravotta, 2007). Speech recognition is

seen as one of the most promising interfaces between humans
and machines, since it is probably the most natural and

intuitive way of communication between humans. For this
reason, and given the high demand for intuitive HMIs,

automatic speech recognition (ASR) systems have had a great
interest shown in them in the last few years. Recently, these
systems present good performance and robustness, allowing,

for example, the control of industrial robots in an industrial
environment (in the presence of surrounding noise) (Pires,

2005). Gestures are another natural form of communication
between humans. In the robotics field, work has been done in

order to identify and recognize human gestures. There are
various ways to capture human gestures, using vision-based

interfaces (Mihara et al., 2003; Waldherr et al., 2000), motion
capture sensors (Aleotti et al., 2004), using the combination
of both (a vision system and a data glove) (Dillmann, 2004),

or using finger gesture recognition systems based on active
tracking mechanisms (Perrin et al., 2004).
Accelerometer-based gesture recognition has become an

emerging technology, providing new possibilities to interact

with machines like robots. Some accelerometer-based input
devices have been developed to work as a flexible interface for

modern consumer electronic products. In order to recognize
gestures, the acceleration data extracted from these devices
has been used as input for artificial neural networks (ANN)

models (Yang et al., 2006; Neto et al., 2009) and Hidden
Markov Models (HMM) (Mäntylä et al., 2000). In other

work, accelerometers and surface electromyography (EMG)
sensors are used synchronously to detect hand movements

(Chen et al., 2007). An interesting approach presents a
method of recognition of lower limb movements using a

three-axis accelerometer and ANNs (Watanabe et al., 2001).
Although, several systems use HMM for accelerometer-

based gesture recognition (Kela et al., 2006) and ANNs have

been applied in a wide range of situations, such as in the
recognition of gestures for sign language (Murakami and

Taguchi, 1991) and vision-based gesture recognition systems
(Akmeliawati et al., 2007). In many research works, ANNs

have produced very satisfying results and have proven to be
efficient for classification problems.
Notwithstanding the above, due to the specific characteristics

of an industrial environment (colours, non-controlled sources

of light and infrared radiation, etc.) it remains difficult to apply
such systems, especially when certain types of infrared and
vision-based systems are used. The reliability of technologies is

also an important issue, as many systems have not yet reached
industrial usage. Given the above, the teach pendant continues

to be the common robot input device that gives access to all
functionalities provided by the robot and the controller (jogging

the manipulator, producing and editing programs, etc.). In the
last few years, the robot manufacturers have made great efforts
tomake user-friendly teach pendants, implementing ergonomic

design concepts, more intuitive user interfaces such as icon-

basedprogramming (Bischoff et al., 2002), colour touch screens

with graphical interfaces, a 3D joystick (ABB Robotics) and a

6D mouse (KUKA Robotics Corp.) (Hirzinger et al., 2005),

and developing a wireless teach pendant (COMAU) (Calcagno

et al., 2006). Nevertheless, it is still difficult for an untrained

worker to operate with a robot teach pendant. The teach

pendants are not intuitive to use and require a lot of user

experience, besides being big and heavy (Hein et al., 2008). It is
interesting to note that in the opinion of many robot

programmers, the cable that connects the teach pendant to

the robot controller is one of the biggest drawbacks of the

equipment.
Several studies have been done to investigate intuitive ways

to move and teach robots, using input devices, such as

joysticks (Nagata et al., 2001) or digital pens (Pires et al.,
2007). Owing to its low price and specific characteristics

(Section 2.2), the Wii remote controller was selected to be the

input device of our system, a wireless device with motion and

infrared sensing capabilities.

1.2 Objectives

The purpose of this work was to develop a system to teach and

program industrial robots by “natural means”, using gestures

and speech. Gestures can be considered a natural

communication channel, which has not yet been fully utilized

in human-robot interaction. Therefore, the aim is to increase

the use of these systems in the robotics field. The game

controller Wii remote is used to capture human hand

behaviours, manual postures (static hand positions) and

gestures (dynamic hand positions). The information collected

from theWii remote (motion data) will be used to jog the robot.

These motion data extracted from the three-axis accelerometer

embedded in the Wii remote, are used as input to a statistical

model and an ANN algorithm previously trained. The outputs

of this statistical and ANN algorithm is the recognized gestures

and postures that are then used to control a robot in the way

required. The developed system incorporates ASR software

that allows the user to manage the cell, acting on the robot and

on the code generation system. Also included is a force control

system to avoid excessive contact forces between the robot tool

and workpiece. This system also detects obstacles and avoids

collisions during the robot operation.
Several experiments were performed to verify the viability of

this system in a non-controlled environment (industrial

environment) and to compare its performance with others,

especially one similar system that instead of gestures uses a

manual guidance system based on a force control strategy.

Different practical tests (pick-and-place, write on a sheet of

paper, and move the robot to different poses in the presence

of obstacles) with two different robots (MOTOMAN and

ABB) are presented, showing that the developed system can

be customized for different users and robots. Possible future

research directions are discussed and conclusions made.

2. Experimental setup

2.1 System description

The demonstration cell (Figure 1) is composed of an

industrial robot (HP6 equipped with the NX100 controller,

MOTOMAN, Japan), a Wii remote controller (Nintendo,

Japan) to capture human hand behaviours, a standard headset

microphone to capture the user voice, a force/torque (F/T)
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sensor (85M35A-I40, JR3, USA) and a computer running the

application that manages the cell (Figure 2).
Using gestures, the user moves the robot to the desired

pose, and then, through voice commands, the user can save

the corresponding robot configuration and generate the robot

code. The user can then move the robot to another point, and

so on, until it reaches the desired robot path.
The application receives data from the Wii remote,

interprets the received data and sends commands to the

robot. For this purpose, the MotomanLib, a Data Link

Library was created in our laboratory to control and manage

the robot remotely via Ethernet (Figure 3). The application

has incorporated ASR software that recognizes the voice

commands received from the headset and, depending on the

commands received acts on the robot or on the code

generation system that is embedded in the application.
An active X component named JR3PCI was used to

communicate with the F/T sensor (Pires et al., 2002),

allowing the application to continuously receive feedback

from the F/T sensor. If any component of force or torque

exceeds a set value, a command is sent, making the Wii

remote vibrate (tactile feedback), alerting the user. This is a

way of providing feedback about the cell state to the user, in
addition to the sound feedback (alert sounds and text to
speech software that reports the cell state and occurrences).
Finally, the application also includes a section to train the
statistical model and the ANN.

2.2 The Wii remote

The demand for new interaction systems to improve the game
experience has led to the development of new devices that
allow the user to feel more immersed in the game. In contrast
to the traditional game pads or joysticks, the Wii remote
allows users to control/play the game using gestures as well as
button presses. It uses a combination of motion sensing and
infrared detection to sense its poses (rotations and
translations) in 3D space. The Wii remote has a three-axis
accelerometer, an infrared camera with an object tracking
system and 11 buttons used as input features. In order to
provide feedback to the user, the Wii remote contains four
light emitting diodes, a rumble to make the controller vibrate
and a speaker. The Wii remote communicates with the Wii
console or with a computer via Bluetooth wireless link,
reporting back data at 100Hz. The reported data contains
information about the controller state (acceleration, buttons,
infrared camera, etc.). Several studies have been done using
the Wii remote as an interaction device, particularly in the
construction of interactive whiteboards, finger tracking
systems and control of robots (Lee, 2008).
In order to extract relevant information from the Wii

remote, the motion sensor and the infrared capabilities of the
controller were explored. After some experiments, it was
concluded that the infrared capabilities of the Wii remote
were not usable. The Wii remote’s infrared sensor offers the
possibility to locate infrared light sources in the controller’s
field of view, but with a limited capacity. The problems arise
with the placement of the infrared source in the cell
(especially when an object gets between the Wii remote and
the infrared source), the limited viewing angle of the Wii
remote, calibration of the infrared sensor, the limited distance
from the Wii remote to the infrared source that the user
should maintain during the demonstration process and
detection problems when other infrared sources are around.
Therefore, it was demonstrated that the information

provided by the motion sensor would be used to achieve the
goals. This motion sensor is a three-axis accelerometer
(ADXL330, analog devices, USA), physically rated to
measure accelerations over a range of at least ^3 g, with a
sensitivity of 300mV/g and sensitivity accuracy of 10 per cent.

Figure 1 The robotic cell is basically composed of an industrial robot,
a F/T sensor, two input devices (Wii remote and headset) and a
computer running the application that manages the cell

F/T Sensor

Wii remote

Headset

Computer

Figure 2 Application interface developed using Microsoft Visual C#

Figure 3 Communication and system architecture

Bluetooth Internet

MotomanLib

JR3PCI

Note: The input devices work without wires (via Bluetooth), giving a
greater freedom to the user
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2.3 Speech recognition

The ASR systems have been used with relative success in the

control of industrial robots, even in the presence of

surrounding noise. An ASR system similar to that presented

in (Pires, 2005) is used, allowing that during the robotic

demonstration, the user can use voice commands to act

remotely on the robot or on the code generation system. For

example, if the user wants to stop the robot motors the

command “ROBOTMOTORSOFF” is spoken. Otherwise, if

the user wants to generate robot code, for example, a command

to move the robot linearly to the current pose, the command

“COMPUTER MOVE LINE” is used. It is important to note

that each voice command must be identified with a confidence

higher than 70 per cent, otherwise it is rejected.

2.4 Force control

The robotic manipulators are often in direct contact with their

surrounding environment. For purely positioning tasks such

as robotic painting, where the forces of interaction with the

environment are negligible, no information about force

feedback is required. However, in applications such as

polishing, grinding or even in the manipulation of objects,

knowledge of the contact forces has a great influence on the

quality and robustness of the process.
In the robotic platform presented here, the implemented

force control strategy will avoid excessive contact forces

between the robot tool and workpiece and, at the same time,

detect and avoid collisions during the robot operation. A F/T

sensor that measures both force and torque along three

perpendicular axes is used, allowing the user to have a better

perception of the surrounding environment. The application

that manages the cell is continuously receiving feedback from

the F/T sensor and if any component of force or torque

exceeds a set value FZA (alert force), a command is sent to

make the Wii remote vibrate (tactile feedback). Moreover, if

the value of that component is increased by a percentage P or

more, the robot immediately stops (Section 3.3). The FZA

value and percentage P is set by the user and depends on the

robot tool, robot speed, workpiece materials, etc.
In order to illustrate the technique, an example is

presented. The vacuum suction cup grip attached to the

robot wrist makes a vertical approximation to the workpiece

(Figure 4). Analyzing Figures 4 and 5, we have that:

. Approximation phase, the force FZ (force component

along the Z-axis) reflects the weight of the tool.
. Beginning of the contact between the tool and the

workpiece. FZ increases rapidly, reaching FZA (the Wii

remote vibrates).
. In this phase, if the user corrects the robot movement the

contact force is reduced and the Wii remote stops

vibrating, but, if the robot movement is not corrected, the

force limit value FZL equation (1) is reached and the robot

immediately stops.
. The robot tool is in contact with the workpiece with an

acceptable contact force:

FZL ¼ FZAð1þ PÞ; P [ ½0; 1� ð1Þ

2.5 Robot code generation

In the construction of an algorithm to generate code, the

keyword is “generalise” and never “particularise”. In other

words, the algorithm must be prepared to cover a wide range

of variations in the process. In this work, the code generation

algorithm receives instructions from the identified spoken

commands. Thus, during the demonstration the user uses

speech to build the robot code step-by-step (write any type of

variables, robot commands, etc.), without specific know-how

of the native robot programming language. Finally, after

finalizing the robotic demonstration task, the user can

generate the entire robot program, upload it to the robot

controller and run it. If desired, the generated robot code can

then be edited and modified.

3. Control strategy

3.1 Robot control

The robot is controlled remotely via the Ethernet using the

MOTOMAN IMOV function that moves the robot linearly

according to a specified pose increment

i ¼ ½i1 i2 i3 i4 i5 i6�T. The first three i components

represent the robot translation along the X, Y and Z-axes,

respectively, while the last three i components represent the

robot rotation about the X, Y and Z-axes, respectively. These

i components have the necessary information to control the

robot. It is therefore necessary to identify them by examining

the behaviour of the user hand that holds the Wii remote.

Figure 4 The various stages of the robot approximation to a workpiece,
where the contact forces are highlighted
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Figure 5 The evolution of the contact forces FZ between the tool and
the workpiece
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In this system, it is completely unnecessary to extract

precise displacements or rotations, being only required to

know which of the pose increment components must be

activated. In a first approach, the robot control strategy was to

identify translation movements and rotations of the user hand

and, depending on these inputs, small pose increments were

continuously sent to the robot. However, it was quickly

concluded that this approach was not viable because the robot

was constantly halting, presenting a high-level of “vibration”.

The achieved solution was to send to the robot only one pose

increment that will move the robot to the limit of the field of

operation.
The robot movement is activated by pressing the Wii

remote B button and making a hand gesture or posture

according to the desired robot movement. After this, if a

gesture is recognized, the robot starts the movement and

when the user releases the B button the robot stops. If the B

button is never released, the robot continues the movement

up to the limit of its field of operation. If a gesture is not

recognized, the robot remains stopped.

3.2 Field of operation of the robot – increment

calculation

According to the user hand behaviour, the robot is moved to

the limit of its field of operation, or more specifically, for a

pose close to the limit of the field of operation. The field of

operation of a six-DOF robot manipulator is approximately a

volume region bounded by two spherical surfaces. This way, it

can be considered that the field of operation of the robot is

bounded by two spherical surfaces equation (2), both with the

centre coincident with the zero reference point of the robot,

and where Rext and Rint are, respectively, the radius of the

external and internal spherical surface:

x2 þ y2 þ z2 # R2
ext

x2 þ y2 þ z2 $ R2
int

8<
: ð2Þ

Before starting any robot movement, the “current” robot

position (xr, yr, zr) is acquired. In order to calculate the pose

increment i, first it is necessary to calculate the increment

components which must be activated. This is done by

referring to the Wii remote acceleration values that will define

the robot movement direction a ¼ (ax, ay, az 2 1) (Section 4).

From the vector a, a unitary vector û can be defined with the

same direction, the direction of the robot movement. This

vector û, in conjugation with the “current” robot position

point (xr, yr, zr), will be used to achieve a straight line

equation (3) that will intersect the external spherical surface

at two points (Figure 6). In a first approach, it is considered

that only the external spherical surface limits the robot field of

operation:

ðx; y; zÞ ¼ ðxr; yr; zrÞ þ kû; k [ R ð3Þ

From equations (2) and (3):

ðxr þ kû1Þ2 þ ðyr þ kû2Þ2 þ ðzr þ kû3Þ2 ¼ R2
ext ð4Þ

Extracting k from equation (4), and considering only the

positive value of k (vector û direction), the distance from the

“current” robot position to the external spherical surface

point (robot increment) is equation (5):

ðx; y; zÞ ¼ ði1; i2; i3Þ ¼ kðû1; û2; û3Þ; k [ R
þ ð5Þ

The value of k depends on the volume reached by the robot.

In the work presented here, using a MOTOMAN HP6 robot,

the value of k is limited to the interval [0, 2012].
Thus, in terms of robot translation movements, the pose

increment is i ¼ ½i1 i2 i3 0 0 0�T. Note that, for

example, if it is found (in the gesture recognition phase)

that the robot should be moved along the X-axis in the

negative direction, the vector becomes û ¼ (21, 0, 0), and

then i ¼ ½i1 0 0 0 0 0�T.
An analogue approach was employed to obtain i when the

robot field of operation is limited by the internal spherical

surface. In this case, if k has no value (impossible to

calculate), it means that the straight line does not intercept

the internal spherical surface and it is the external spherical

surface that limits the robot field of operation.
In terms of rotations, since we know the robot rotation limit

values and the “current” robot pose, it is easy to obtain the

increments i4, i5 and i6.

3.3 Security systems

When a human interacts directly with a robot in a co-worker

scenario, the security systems present in the robotic cell

should have a high-level of robustness, in order to avoid

accidents. A system was implemented in our robotic cell a

system that is continually receiving data from the Wii remote

(via Bluetooth) and if the communication fails, the robot

immediately stops. An independent system was implemented

an independent system that actuates directly in a low-level of

the control hierarchy, stopping the robot if any problem

occurs. This system operates independently from the software

that is running on the robot or computer.
Since the Wii remote communicates via Bluetooth, it is

important to discuss the reliability of this technology.

Investigations and practical tests have proven Bluetooth’s

Figure 6 The two spherical surfaces that define the robot field of
operation

Z

(az–1)

ay

ax (xr,yr ,zr)

Y

Note: The “current” robot point and the acceleration vector
components that will define the robot movement direction are
represented in the figure

X
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reliability, but caution should be exercised when installing
Bluetooth products. Important issues are interference with
other Bluetooth nodes, radio standards and sources of
radiation (industrial equipment or commercial devices like
microwave ovens). Thus, considering the high demands for
safety and real-time performance in industry, this technology
must be used with care.

4. Posture and gesture recognition

4.1 Modes of operation

The developed system has two distinct modes of operation
that the user can select during the demonstration phase. In the
first mode, the robot moves along the X, Y and Z-axes
separately, while in the other mode the robot can move along
the three axes at the same time. In terms of rotations, in both
cases, the rotation around each of the three axes is done
separately, an axis at a time.
The accelerations extracted from the three-axis

accelerometer (ax, ay, az) will be used to detect the user
hand gestures and postures. When the Wii remote is operating
in a dynamic way, the gravity components will appear mixed
with the inertial components of acceleration. In order to
prevent this situation, when the user makes gestures, the Wii
remote must be kept horizontal (Figure 7). Thus, it is known
that the force of gravity acts along the Z-axis. For example, to
move the robot in the X-direction, the user should move the
Wii remote along the X-axis, keeping it in the horizontal.

4.2 Recognition of gestures and postures

In accelerometer-based gesture recognition, the signal
patterns produced by the accelerometers are used in
generating models that allow the recognition of different
gestures. Moving the Wii remote over each one of the three-
axes (in both directions), we can extract (ax, ay, az) for each of
the six different gestures necessary to take full control of the
robot translations ðXþ;X2;Yþ;Y2;Zþ and Z2Þ. When
the Wii remote is moved in the positive X-direction ðXþÞ
(Figure 8), initially the value of acceleration ax increases
because the hand begins to move and then, when the hand

begins to slow the positive value of ax is converted to a

negative value. This point ðax ¼ 0Þ marks the point of

maximum speed. The acceleration ay remains near to zero,

and az remains near to one because the Wii remote is held

horizontally. A similar reasoning can be done to the other

gestures ðX2;Yþ;Y2;Zþ and Z2Þ.
To interpret the acceleration values and recognize the hand

movements, a statistical approach was used. For each of the

six gestures is calculated the arithmetic mean of the

accelerations measured in the training phase, (�ax; �ay; �az)
(from the beginning of the movement to the first point of zero

acceleration (maximum speed)). After this, the standard

deviation is used to measure how widely spread the

acceleration values are from each mean (sx, sy, sz). This

way, in the training phase a range of acceleration values is

established, which define each of gestures. During the robotic

demonstration phase, a gesture is recognized when:

ax [ ½�ax 2 sx; �ax þ sx� ay [ ½�ay 2 sy; �ay þ sy�

az [ ½�az 2 sz; �az þ sz�

where, (ax, ay, az) are means of the acceleration values

measured during the robotic demonstration phase (again from

the beginning of the movement to the first point of zero

acceleration (maximum speed)). However, under this

approach, the robot begins to move after the system

recognizes the gesture of the hand, showing a considerable

delay from the press of the B button to when the robot starts

to move. This delay is due to several acceleration

measurements made during the execution of the gesture.
Thus, an alternative methodology was investigated. To

achieve the goals, this time delay is not acceptable. The aim is

that the robot starts the movement almost at the same time as

the user starts the hand movement and presses the B button.

To do this, immediately after the user starts the hand

movement and presses the B button, the system extracts the

acceleration values from the Wii remote, identifies the gesture

and sends a command to move the robot. It is quite

complicated to do this in few milliseconds because it is

necessary to make several measurements of acceleration over

time. This problem can be solved by making fewer

measurements of accelerations. However, if the number of

measured acceleration is reduced, it is more difficult recognize

Figure 7 The developed system can recognize six different gestures
(X þ , X 2 , Y þ , Y 2 , Z þ and Z 2 ), it is necessary to take full
control of the robot in terms of robot translations

Z

Y

X

Note: In both movements the Wii remote is held horizontally

Figure 8 The measured accelerations, when the Wii remote is moved
along the X-axis in the positive direction ðXþÞ
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a gesture and the recognition rate becomes low. The goal is to

achieve a compromise between the time delay, and the
achieved recognition rate. After some experiments were done
to evaluate the system response time, it was decided to extract
from the accelerometer only the first four measurements of

acceleration that constitute an input pattern. A gesture is
identified by comparing the extracted acceleration values with
the values acquired in the training phase, following the same
statistical approach outlined above. This alternative
methodology was then developed using ANNs.
In the second mode of operation, the robot is moved

linearly along the direction that the user hand demonstrates,
in other words, the vector of accelerations a ¼ (ax, ay, az 2 1)

will directly define the robot movement direction. The vector
a is extracted immediately after the user starts the hand
movement and presses the B button (this vector is defined as a
mean of the four first measurements of acceleration). The
third component of a is (az 2 1) since the Wii remote is held

horizontally, reporting an acceleration along the Z-axis.
Besides, the robot translations, the robot control

architecture needs also to have as input six different robot

rotations ðRxþ; Rx2; Ryþ; Ry2; Rzþ and Rz2Þ. If the Wii
remote is in free fall, it will report zero acceleration. But if the
Wii remote is held horizontally with the “A” button facing up
(Figure 9(a)), it will report an acceleration along the Z-axis,
the acceleration g due to gravity, approximately 9.8m/s2.

Thus, even when the user is not accelerating the Wii remote, a
static measurement can determine the rotation of the Wii
remote (hand posture recognition).
Analyzing Figure 9(a), when the Wii remote is held

horizontally, it will report an acceleration g along the Z-axis in
the positive direction; az < g, ax < 0 and ay < 0. But when
the Wii remote is rotated around the Y-axis (Figure 9(b));
ax < g, ay < 0 and az < 0. On the contrary, when the Wii

remote is rotated around the Y-axis in the reverse direction
(Figure 9(c)); ax < 2 g, ay < 0 and az < 0. A similar
approach detects rotations around the X-axis (Figure 9(d)
and (e)). In the detection of gestures (robot translations
without time delay), a range of acceleration values is

established which define each of the postures ðRxþ; Rx2;
Ryþ and Ry2Þ. However, in terms of rotation around the
Z-axis (Figure 9(f) and (g)), nothing can be concluded as in
both cases the gravity is along the Z-axis. To solve this

problem, an ANN was used to detect rotation movements
around the Z-axis, and this method was then also used for the
other two axes.

4.2.1 Neural networks
The ANNs have been applied in the recognition of gestures
with success, especially because they are simple to use and

efficient in the recognition of patterns. Moreover, the ANNs
present good learning capabilities, such as, the ability to learn
from experience and to generalize from examples to correctly
respond to new data.
In order to detect and identify gestures and postures, anANN

trained with a back propagation algorithm was implemented.
The input signals (acceleration data) are represented by a vector

x ¼ (x1, . . . , xn), and the output from a neuron i is given by
equation (6), where xj is the output of neuron j, wij is the weight
of the link fromneuron j to neuron i, ui is the bias of neuron i, and
F is the activation function:

xi ¼ F
X

j
wijxj þ ui

� �
ð6Þ

Figure 9
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Notes: (a) – no rotation; (b) – rotation around the Y-axis in the negative
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(g) – (Rz – )
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It is now necessary to find the weights of the network. The back

propagation algorithm is used as a learning algorithm to

determine the weights of a network, in other words, themethod

adjust the weights to minimize the errors. These errors can be

determined from the input neurons (training set of several

patterns) and the desired output vector. The error is achieved

comparing the desired output (obtained in the training phase)

with the actual output. This methodology presupposes that

gestures trained for performing certain functions are always
repeated as they were trained.

4.2.2 Methodology
A specific gesture or posture is recognized by a three-layer

ANN (Figure 10). The number of neurons was 12 for the

input layer, 20 for the hidden layer and 12 for the output
layer. A total of 12 neurons in the input layer encode each

gesture, four measurements of acceleration and each with

three components of acceleration. About 20 neurons were

used in the hidden layer because after several experiments it

was concluded that this solution presents a compromise

between the computational time required to train the system

and the recognition rate. Finally, the 12 neurons in the output

layer correspond to each different gesture/posture.
In the training phase, the user should train the system,

demonstrating the hand movement for each gesture and

posture several times ðXþ; X2; Yþ; Y2; Zþ; Z2; Rxþ;
Rx2; Ryþ; Ry2; Rzþ and Rz2Þ. The acceleration values

representing each gesture/posture are given to the input

neurons (learning patterns), and at the same time, one of the
output neurons corresponding to the presented gesture or

posture is set to 1.
Each neuron of the output layer outputs the recognition

result, a numerical value between 0 and 1 (sigmoid function).

If the output value is larger than or equal to 0.5, it means that

the neuron detected the gesture or posture. A gesture/posture
is recognized with a confidence higher than 80 per cent. If a

gesture is classified correctly and if the output neuron related

to this gesture has a value near to 1, the confidence is high. If

a gesture is classified correctly, but the output value of a

specific neuron is not so close to the training data, the
confidence is low.
Finally, to define the robot increment, the recognized

gestures are then transformed in the vector û, for example, if

is detected the movement (Y þ ), û ¼ ð0; 1; 0Þ.

4.2.3 Recognition rate and discussion of results
In this section, the results obtained through several
experiments are presented, discussed and compared with

other approaches.
After training the system, several tests were conducted to

achieve the recognition rate for each gesture and implemented
method. The first method presented here, statistical approach

with a time delay is named Method 1, the second, statistical
approach without time delay is named Method 2, and the

third, ANN approach without time delay is named Method 3.
The tests were conducted with four participants, and each
one performed each gesture/posture 100 times. The

participants were two experienced users that trained the
system before performing the tests (P1 and P2) and two first-

time users that used the system trained by the other users
(P3 and P4). Table I presents the recognition rate for each

gesture and posture, varying the method and the participants.
The recognition rate is presented as the mean for the

participants P1 and P2, and the same for the participants P3
and P4.These results are obtained with 30 patterns taught to

the network in the training phase. For Method 3, the ANN
parameters are presented in Table II.

Figure 10 Structure of the ANN used for recognition of gestures and
postures

Input (12)

x1 = ax1

x4 = ax4

x5 = ay1

x8 = ay4

x9 = az1

x12 = az4

Hidden (20) Output (12)

X +

X –

Y +

RZ –

Table I Recognition rate for different gestures and postures

Recognition rate (%)

Method 1 Method 2 Method 3

Gesture

or posture

P1

and P2

P3

and P4

P1

and P2

P3

and P4

P1

and P2

P3

and P4

X 1 99 80 94 79 97 83

X 2 98 77 93 75 95 77

Y 1 99 78 92 74 96 78

Y 2 97 78 93 72 93 76

Z 1 98 90 95 77 98 81

Z 2 98 84 90 69 96 75

RX 1 100 93 100 91 100 96

RX 2 100 96 100 94 100 95

RY 1 100 97 100 90 100 92

RY 2 100 98 99 89 100 95

RZ 1 95 71 89 68 92 71

RZ 2 93 67 86 65 90 69

Mean 98 84 94 79 96 82

Table II ANNs parameters and results

Activation function Sigmoid function

Training cycles 100,000

Number of hidden neurons 20

Learning rate 0.25

Momentum 0.1

Computer processor Intel core 2 duo T5600

Computer RAM 1 GB

Computational time 34 min

Training time 6 min
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In Method 1, the experiments showed a recognition rate of

98 per cent for the participants P1 and P2, and 84 per cent for

the participants P3 and P4. The Methods 2 and 3 do not

present such a good average of correctly recognized gestures,

but in compensation do not have the time delay, which is

crucial in the system. Method 3 (ANN approach without time

delay) was shown to be the best solution, with a recognition

rate of 96 per cent for the participants P1 and P2, and

82 per cent for the participants P3 and P4. For P1 and P2,

even the lowest recognition rate of the gesture RZ 2 is

90 per cent. It was concluded that the participants P1 and

P2 present better results than the participants P3 and P4,

demonstrating the necessity for each user to train the system

before using it. However, the aim is that the time spent in the

training should be minimal. The users do not want to spend

time demonstrating gestures and postures to the system, but

at the same time it is necessary to keep a compromise with the

recognition rate.
The recognition rate of the output depends a lot on the

samples provided during the training phase (learning patterns).

Given that Method 3 proved to be a good solution, several

experiments were made to test its performance when the

number of samples given to the ANN in the training phase is

changed. In Table III are presented the results, keeping the

parameters of the ANN described in Table II. It was found that

the model requires 30 samples per gesture to achieve an

accuracy of about 96 per cent, but if the number of learning

patterns is increased to 60 or 70, the recognition rate is

improved but not significantly. Giving 30 patterns to the system

the user takes 6min in the training phase, and with 60 patterns

the user takes 11min.
Each different user can train the system using an intuitive

interface (Figure 11). Moreover, the system can be trained to

recognize other gestures than those already mentioned, for

example, a gesture to activate a specific robot output signal.

The participants commented that it is easy and intuitive use

gestures for controlling an industrial robot.
The recognition rate obtained by our system presents similar

results to other systems that use ANN to recognize gestures. An

ANN-based approach using a data glove as input device

presents a recognition rate of 98 per cent (Murakami and

Taguchi, 1991). A vision-based gesture recognition system for

hand gesture recognition achieved a recognition rate of over

90 per cent (Akmeliawati et al., 2007). Another study using an

accelerometer-based input device to operate televisions

presented a recognition rate higher than 97 per cent (Yang

et al., 2006).

5. Practical tests and results

To assess the performance of our system, different practical

tests were performed (using Method 3). These tests include a

robotic pick-and-place operation, write on a sheet of paper,

and move the robot to different poses in the presence of

obstacles (Figure 12). Both practical tests were made in a

non-controlled environment and the results obtained were

very promising, showing that an untrained user can generate a

robot program for a specific task, quickly and in a natural way

(Video 1, 2009). Other advantages of the system are:
. Short set-up time after the training phase.
. Given the current state-of-the-art in this area, the system

presents a good average of recognized gestures and

speech.
. In terms of accuracy of the robot-controlled movements,

since the user can control the robot speed, each robot

movement can be controlled with a high-level of accuracy.

In practice, when the robot is near to the workpiece or

obstacle, the robot speed is reduced.
. The force control helps in the positioning of the robot,

avoids excessive contact forces between the robot tool and

workpiece, and at the same time detects and avoids

collisions during the robot operation.
. Usability of the system for non-expert robot programmers.
. Offers the possibility to control and program different

robots using the same basic gestures.

The drawbacks are:
. Complexity of the system (communications, security).
. Owing to the fact that the Wii remote and the headset

communicate with the computer via Bluetooth, the user

should remain close to the computer (must be used within

7m).
. Time spent in the training phase. Each user must train the

system to recognize his or her particular hand behaviours.
. Reliability of Bluetooth devices.

Figure 11 Application interface for the training phase

Table III Effect of the number of learning patterns in the recognition
rate

Recognition rate (%)

Number of learning patterns P1 and P2 P3 and P4

20 94 79

30 96 82

60 97 84

70 97 85
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However, in terms of robot control, when compared with

other common input devices, especially the teach pendant,
this approach using the Wii remote is more intuitive and easy
to use, besides offering the possibility to control a robot by

wireless means.
The system response time for Method 3 was evaluated. It is

difficult to measure the response time, assuming that it is
fractions of a second. Owing to the complexity of the system,

a camera recorder was used to film the robot and the user
holding the Wii remote. Analyzing the captured film and
counting the frames from the press of the Wii remote B

button to when the robot started to move, the system
response time was measured. After several experiments, it was

concluded that the response time of our system is 140ms,
which is quite reasonable.

5.1 Comparison with a manual guidance system

The performance of the system developed (Method 3) was
compared with a similar system that instead of gestures uses a

manual guidance system based on a force control strategy to
move/guide the robot in space (Pires et al., 2009; Video 2,

2009; Fixell et al., 2007), (Figure 13). Both systems are
intuitive and easy to use, however, to do the same robotic task
the manual guidance system takes less time. A test was

conducted, where the robot wrote three letters (S, M and E).
Our system takes 2min and 15 s to write the three letters with

a robot speed of 75mm/s, while the manual guidance system

takes 30 per cent less time. In addition to the above, the

manual guidance system presents better robustness than our

system that sometimes does not recognizes the hand postures

and gestures. Moving a robot through manual guidance gives

the user a feeling of greater control and involvement with the

robot that the user cannot have when using the Wii remote.

However, the manual guidance system also presents some

drawbacks that limit its use, such as the high price, and the

fact that this system can only be incorporated in ABB robots.

The aim is that with further development, our method can be

more practical than or equally practical to manual guidance.

6. Future research

The recognition rate for gestures and postures should be high

(nearly 100 per cent). This high-recognition rate is required

because a low-recognition rate may cause the users to

abandon the method. Future work will seek to improve the

recognition rate of gestures and postures. Another interesting

aspect would be to achieve precise displacements from the

measured accelerations, despite the risks of systematic errors

accumulated in the double integration phase. Finally, a long-

term goal is continuous gesture recognition.
Since the input devices containing accelerometers are

cheap, developments in accelerometer-based gesture

recognition is increasing significantly. This ability to detect

gestures is useful not only in the robotics field but also for

interacting with other different kinds of devices.

7. Conclusion and discussion

Owing to the growing demand for natural HMIs and robot

intuitive programming platforms, a robotic system that allows

users to teach and program an industrial robot using gestures

and speech was proposed. It was shown how a novel game

input device with motion and infrared sensing capabilities

could be integrated in a robotic cell to obtain a high-level

programming environment.
Special emphasis was placed on the recognition of gestures

and postures in a non-controlled environment, where the

motion sensing capabilities of the Wii remote were used for

accelerometer-based gesture recognition. Experiments

showed that an approach using ANNs is a good solution to

achieve a reasonable gesture and posture recognition rate up

to 96 per cent. Moreover, the system presents an acceptable

response time, 140ms. This is the time delay from the

Figure 13 Owing to their force control system, the ABB robot (IRB 140
equipped with the IRC5 controller, ABB, Switzerland) can be guided
manually by the user

F/T Sensor

Headset
Computer

Figure 12

(a) (b) (c)

Notes: (a) – robotic pick-and-place operation; (b) – robot writing letters; (c) – robot moving in the presence of obstacles
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moment the user starts to perform the gesture until the robot

starts to move.
The Wii remote is an off-the-shelf product, available in the

market at a low price. Using this and other standard

technologies means that future innovation will be faster and

less expensive. Finally, most of users found it natural and

intuitive to use gestures for controlling an industrial robot.
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