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Abstract In this paper, an adaptive and low-cost robotic
coating platform for small production series is presented.
This new platform presents a flexible architecture that
enables fast/automatic system adaptive behaviour without
human intervention. The concept is based on contactless
technology, using artificial vision and laser scanning to
identify and characterize different workpieces travelling on
a conveyor. Using laser triangulation, the workpieces are
virtually reconstructed through a simplified cloud of three-
dimensional (3D) points. From those reconstructed models,
several algorithms are implemented to extract information
about workpieces profile (pattern recognition), size, boundary
and pose. Such information is then used to on-line adjust the
“base” robot programmes. These robot programmes are off-
line generated from a 3D computer-aided designmodel of each
different workpiece profile. Finally, the robotic manipulator
executes the coating process after its “base” programmes have
been adjusted. This is a low-cost and fully autonomous system
that allows adapting the robot’s behaviour to different
manufacturing situations. It means that the robot is ready to
work over any piece at any time, and thus, small production

series can be reduced to as much as a one-object series. No
skilled workers and large setup times are needed to operate it.
Experimental results showed that this solution proved to be
efficient and can be applied not only for spray coating purposes
but also for many other industrial processes (automatic
manipulation, pick-and-place, inspection, etc.).

Keywords 3D laser scanning . Robotics . 3D
reconstruction . Pattern recognition . Flexible
manufacturing . Autonomous systems . Spray coating

1 Introduction

1.1 Motivation

Production lines tend to evolve into the concept of mass
customization, i.e., working on small production series with
flexible and customized procedures to each of them
according to customers’ demands. Consequently, this means
that high flexibility and versatility are mandatory concepts
to the production lines of today. However, the setup and
reconfiguration time of those flexible manufacturing sys-
tems (many times robot-based systems) is still too large
when compared with the effective production time. System
reconfiguration and associated downtimes imply strong
financial efforts. Moreover, highly qualified and skilled
workers are needed to operate this kind of flexible systems.
This is a problem since many companies have no budget to
hire skilled workers.

Robotic manipulators are often a key element of flexible
manufacturing systems. However, industrial manipulators
still take a long time to be programmed. In fact, robot
programming is a time-consuming task that usually requires
experienced and highly qualified workers to perform it.
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Despite these drawbacks, robotic manipulators are strongly
desired in modern production lines. They have a series of
advantages over human labour such as the ability to work
continuously, high accuracy and repeatability, immunity to
fatigue, immunity to distractions and the capacity to work
in hazardous environments.

Taking the case study of an adaptive robotic coating
system for small production series, this paper presents a
low-cost and flexible architecture that enables fast system
adaptation to changing conditions (product variants) with-
out human intervention.

Most of the manufactured products need to be coated to
improve their visual appearance and/or to provide protection
from corrosion or damage. Manual coating operations can
cause many problems such as environment pollution, coating
material waste, inconsistent quality and low productivity [1].
These are some of the reasons why many companies are
changing their manual coating systems to automated ones.
This research work was initiated at the request of a small and
medium-sized enterprise (SME) named FLUPOL. This SME
is an industrial coatings applicator that usually works with
small production series and with very different products
(industrial bakeware, automotive parts, housewares, etc.).

1.2 Proposed architecture and technologies

The proposed platform integrates three different sub-
platforms (Fig. 1). The artificial vision system captures

images of the workpieces travelling along a conveyor, and
on which a laser line is projected (three-dimensional (3D)
laser scanning). The laser line scans the entire workpieces
as they are transported (note that the camera and the laser
are fixed while the workpiece is being transported on the
conveyor). Then, using laser triangulation the workpieces
are virtually reconstructed through a simplified cloud of 3D
points. From those models several algorithms are imple-
mented to extract information about workpieces size,
boundary, profile and pose. A k-nearest neighbour (KNN)
classifier is used to classify the different workpieces
(pattern recognition).

Generally speaking, the proposed platform produces the
3D reconstruction of the workpieces, identifies those
workpieces and also provides information about work-
pieces’ pose. All this information enables on-line automatic
system adaptation to the working scenario according to the
specific profile and pose of each workpiece. In practice, this
information is used to automatically select and adjust the
“base” programmes that run on the robot controller. These
robot programmes are off-line generated from a 3D
computer-aided design (CAD) model of each different
workpiece profile. Finally, after the selected “base”
robot programmes have been adjusted on-line, the
robotic manipulator executes the coating process. Its
coating schemes are adapted to match the workpieces’
size and layout.

1.3 Related work and discussion

The integration of artificial vision with laser triangulation,
pattern recognition and flexible reprogramming schemes of
industrial manipulators has not yet been intensively
discussed in literature, at least for all these fields’ together.
On contrary, artificial vision, laser-based scanning systems
for different applications as well as pattern recognition
techniques have been largely reported in literature.

Profile acquisition and recognition of real world objects
is an important issue for modern manufacturing systems.
Numerous technologies have been studied to perform the
above mentioned tasks, all of them with a wide range of
hardware costs and different levels of achievable accuracy
and detail. Streaming video and image-based techniques,
structured light and laser light-sectioning methods, time-of-
flight range finders, shape-from-silhouette algorithms and
space-carving techniques are some of the methods which
have been studied in recent years [2, 3]. Moreover, machine
learning techniques [4–6], modelling of error [7] and
methods to deal with time delays [8, 9] are often associated
with this type of technologies.

In the last few years, several techniques related to laser
scanning have been studied. This includes a scanning
system to reconstruct a 3D surface as a large set of

Image Processing | Pattern Recognition
3D reconstruction | Feature extraction

Communication with Robotic Manipulator
CAD-Based Robot Programming

Robotized
Coating

Artificial Vision
Laser Scanning

Fig. 1 Simplified platform architecture
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polygonal meshes [10], a scanning system for complex
surfaces [11] and a CAD/scanner based framework for
robotic coating of complex products where the surface
models are generated from points cloud [1]. A stereo head
of cameras for a triangulation-based laser sensor device has
been used for object recognition purposes [12]. An image-
based visual seam tracking system for butt weld of thin
plates where a structured laser light is used to detect the
welding torch deviation is proposed by Fang et al. [13].
Marshall et al. proposes a solution based on the segmen-
tation of range images for 3D reconstruction purposes [14].
Lowe proposes a 3D object recognition system from single
2D images [15]. A laser-scan system for medical applica-
tions was proposed by Hayashibe et al. [16]. An approach
to automatically generate robot programmes for spray
painting of unknown parts is presented by Vincze et al.
[17]. This system is based on laser triangulation sensing,
geometric feature detection, robot tool path planning and
generation of collision-free robot programmes. In fact, the
goal of this system is similar to the goal of the system
proposed in this paper. However, some substantial differences
in methodology can be pointed out: the solution proposed in
[17, 18] can be uneconomical for many companies since it
uses some relatively expensive commercial solutions.
Moreover, the process of 3D reconstruction is performed
combining a large number of elementary geometries
while in the system proposed in this paper the work-
pieces are classified and 3D reconstructed through a
simplified cloud of points.

Owing to recent advances in laser scanning technology,
the set of dense points collected from the surface of a
physical object can contain millions of points (point cloud
data), leading to significant computational challenges. In
this way, point cloud simplification algorithms have been
studied [1, 19]. The solution proposed in this paper
addresses this situation by using simplification methods to
reduce the number of necessary points to virtually
reconstruct a certain object with a predefined level of
accuracy. This makes the reconstruction process faster.

Looking at other fields of application of vision and laser-
based scanning, a lot of research has been carried out with
facial recognition [20, 21], dimensional measurement of
objects [22] and even for inspection and control of quality
purposes [23, 24]. Kwok et al. proposes a laser-based
system to collect 3D data around the surface of a turbine
blade. From the reconstructed blade model a tool path is
generated [25]. Another similar system is dedicated for
turbine blades repair through the reconstruction of the
blades from multiple range images [26]. A recent study
analyses the applicability of scanning systems for geometric
and dimensional tolerance control [27]. In fact, some
analysis on precision have already been made, for example
comparing the use of single or multi laser beams [28], or,

exploring alternative computer vision systems as stereo-
scopic pairs [29]. Aliakbarpour et al. presents a good
coverage on calibrating camera-laser setups [30]. Another
interesting approach reports an industrial application in
which a robotic assembly of a car door is assisted by a laser
scanning system [31].

As a final summary, we can point out that most of the
existing systems (off-the-shelf and laboratory prototypes)
similar to ours are complex to use, suffer from lack of
portability and usually are highly expensive when com-
pared with the custom setup presented in this paper.

2 Artificial vision and laser triangulation

The artificial vision subsystem is responsible for capturing
images of the workpieces travelling along a conveyor. A fixed
laser line is projected onto those workpieces. This laser line is
identified in each video frame and thereby it will serve as input
to generate three-dimensional information about each work-
piece. Image processing begins with the isolation of the laser
line for each frame: the environment illumination is controlled
(this makes the area the camera is filming dark) and this way
the laser line appears brighter in the images. A binarization
algorithm (1) is applied to each image, allowing us to work
over very clean images as the one in Fig. 2 (FB&W is the
binarized image). The laser line appears in white and
everything else in black.

FB&W u; v½ � ¼ 0 if u; v½ � < threshold

1 if u; v½ � � threshold

(
ð1Þ

2.1 Camera calibration

Camera calibration is one of the main issues of artificial
vision systems. It allows identifying the artificial vision
system parameters, in other words, calibration allows us to
recognize the position in the world of any image pixel and
vice versa. Assuming that all coordinate systems are
Cartesian, in homogeneous coordinates the relation be-
tween pixel coordinates Px and world coordinates P can be
seen in [32, 33]. Thus, we have:

Px ¼ H � P ð2Þ

Fig. 2 Binarized image
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Where H is the projection matrix whose fields are
parameters we want to estimate, namely the translation and
rotation of the camera, the focal length, the point where the
optical axis cuts the image plane and the relation between
sensor and pixel size. For this purpose, we have used
OpenCV routines. These OpenCV routines are commonly
used in the scientific community for camera calibration
purposes. Along with the parameters mentioned above,
these routines also provide information about the parame-
ters for compensating the radial and tangential distortions of
the images [34]. Calibration is achieved simply by showing
to the camera different views of a chessboard pattern with
known size.

2.2 Laser calibration

One might consider that the laser line projected onto the
workpiece actually originates a plane L (Fig. 3). The
intersection of plane L with the half-line obtained by
P ¼ H�1 � Px results in a single and well defined point in
space. Note that the laser must be placed obliquely to
the camera. The equations of both the half-line r and
plane L:

r : Pr ¼ Pr0 þ wr � t; t 2 R ð3Þ

L : wn � PL � PL0ð Þ ¼ 0 ð4Þ
Where Pr0 and PL0 are known points from the line and

the plane respectively, for example the beginning of the
half-line (position of the camera) and the position of the
laser that also belongs to the plane; wr ¼ xr yr zr½ �T is the
vector that contains the direction of the half-line and wn ¼
xn yn zn½ �T is a vector orthogonal to the laser plane; PL is a
point of the plane L. Finding the point that belongs
simultaneously to r and L, we have:

Pr0 þ wr � t � PL0ð Þ � wn ¼ 0 ð5Þ

And then we get t as:

t ¼ d � xn � xr0 � yn � yr0 � zn � zr0
xn � xr þ yn � yr þ zn � zr ð6Þ

Where:

d ¼ wn � PL0 ð7Þ

Supposing the camera had been calibrated before this step,
the half-line equation is already known. Coming to know
the laser plane parameters is also quite simple. We start by
measure the laser position in the world and then we get two
more points non-collinear with the laser position. Then, we
just measure two points from the laser line when it hits any
object in the world. After this, the laser is calibrated.

By replacing t in Eq. 5, we get the world coordinates Pr

of any point of the image which also belongs to the laser
line. We can now jump, unequivocally, between image
coordinates and world coordinates.

3 3D reconstruction

Virtual 3D reconstruction of real profiles has gained an
increasing importance in industry. For the proposed
approach, while the workpieces are being transported on
the conveyor, the camera and laser setup keeps unaltered
(fixed). Thus, owing to the workpieces motion, the form of
the laser line captured by the camera is changed according
to the moving workpieces are gone. In fact, virtual
representations of real objects give users a “feeling” about
the real aspect of the reconstructed workpiece. In this way,
these virtual models enable quick visual validation and
errors may be tracked.

The real workpieces can be recreated in a 3D artificial
environment by analysing the successive image frames and
storing 3D data extracted from each one. Nevertheless, a
more natural way to store collected 3D data is needed, other
than having a set of loose points in space. Collected data
should be well organized and treated by efficient algo-
rithms. Hence, apart from visuals, all collected points were
stored in a matrix form, making the indexes i and j of the
matrix match with two of the axis of the world reference
frame (Fig. 4). The third direction elements are associated
with each pair of indexes (i and j). In this way, one can map
a certain volume in space into a simple matrix form. The
points that describe the 3D models of a given workpiece are
then arranged into a data structure that can be written as:

x

y

z

2
64
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w

¼
0

ymin

zmin

2
64

3
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w

þ
Matrixði; jÞ
Sc � i
�Sc � j

2
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3
75 ð8Þ

r

Camera
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Motion
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0rP
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L

rw
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Fig. 3 Intersection of the laser plane with the half-line containing all
the points that are projected into the same pixel
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Where Sc is a scale factor that correlates the index length
with its world length. ymin and zmin are just the offset
between the matrix origin and the world origin. Note that
one more time subscript w indicates the world frame.

3.1 Results

Figure 5 presents two different views of a 3D reconstructed
workpiece, the horizontal wavy-surface plate shown in
Fig. 6, with approximately height=0.80 m and width=
0.40 m. These plates shown in Fig. 6 are examples of
industrial bakeware produced by FLUPOL. Addressing the
requirements of the proposed platform, the results of the
reconstruction process are very good. Comparing the
dimensions of the reconstructed workpieces with the real
values, we can establish an error value. In fact, it is
important to quantify the error we have on the acquisition
of workpiece dimensions. Error is more prominent on the
edges of the captured images (the edges of the workpieces)
due to large barrel distortion. Consequently, shorter work-

pieces have a minor error. In the case of one of the biggest
horizontal wavy-surface plates (80×40), we have an error
of 2.2% on length and 2.1% on width. After several tests
with different workpieces we can establish an average of
2% of error as an upper bound.

4 Feature extraction and pattern recognition

4.1 Border calculation

Using the matrix representation mentioned in previous
section, a segmentation algorithm was implemented so that
any workpiece profile could be evaluated. For the particular
case of the coating process under study, all workpieces are
transported on a rectangular metallic support (Fig. 7). This
evidence contributed to facilitate the process of 3D
reconstruction. Figure 8 shows a flowchart reporting the
implemented algorithm for workpiece border reconstruction
purposes. Figure 9 shows the result of applying the
proposed border reconstruction method.

4.2 Slope calculation

As the metallic support that “supports” the workpiece is fixed
to the conveyor in only two points, due to conveyor motion the
hanging workpiece tends to deviate from its vertical pose.
Thus, an important feature to extract from the reconstructed
workpiece is the slope of the workpiece in relation to an “ideal”
vertical pose. The proposed platform allows the estimation of
workpiece inclination in a trivial way. In fact, the estimation of
workpiece slope is an important issue when the coating phase
is initiated. Other methods or techniques would most likely
need additional sensors to the same end, making the whole
setup more expensive and trickier to deal with.

Starting from a 3D reconstructed model and adequately
choosing some model points, the plane that best fits those
points can be computed. We are not using all of the model
points because it would severely slow down the computations

Fig. 5 3D reconstruction of the horizontal wavy-surface plate. Front
view (left) and lateral view (right)

Fig. 6 Three different workpieces produced by FLUPOL. Horizontal
wavy-surface plate (left), vertical wavy-surface plate (middle) and
smooth surface (right)

j

iMatrix

ZW

YW

Fig. 4 Relationship between matrix indexes and world reference
frame over a camera snapshot
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as we are talking about almost one million points. Thus, we are
mostly using the edge points of the reconstructed models to
define the plane. The first step is to eliminate outliers, points out
of the border area and points with very different depth
comparing to other points inside the border region. Then, the
“clean” edge points are the input for the regression process. The
plane is calculated by following a method that consists in
solving the least squares problem using the singular value
decomposition (SVD) technique [35].

Some factors affect the quality of the plane provided by the
SVD analysis. There are problems both with outliers (above
mentioned) and the non-symmetry of the reconstructed
models. As we have only one laser (placed obliquely to the
camera), when the wavy-like models are scanned some areas
cannot be reached by the laser line (hidden areas). As an

example, with the camera orthogonal to the workpiece and the
laser pointing from left to right, the right side of the waves
cannot be scanned. The result is a non-symmetric 3D model.
Then, this is another reason because we are mostly using the
edge points of the reconstructed models as input for the SVD
analysis. These are just some hundred points, no serious threat
on computational time. For a sample of 1,000 points, the SVD
process takes about 10 ms.

In terms of slope error, it is difficult to estimate it
because it is substantially different for each different
workpiece. The uncertainty comes from the way the
operator places the workpieces in the conveyor.

Figure 10 shows the plane that represents an approxi-
mation to a specific workpiece slope is superimposed on
the reconstructed workpiece model. The orientation of this

Workpiece
(horizontal wavy-

surface)

Laser

Conveyor

Camera

Laser-line

Metallic support

Workpiece
(horizontal wavy-

surface)

Robot
 

Fig. 7 System setup: laser scanning (left) and robotic coating process (right)

For each line: scanning from
the left to the right in order
to find matrix valid entries

Pf

Pb

Pa

Identification
of points as belonging to the

metallic support, Pa

Continue scanning until it
finds the gap

Identification of entries as
belonging to the gap, Pf

Detection of the end of
the gap (valid entries of the
matrix are achieved again)

Sort the
first points immediately after
the gap as border points, Pb

Save points

Fig. 8 Border reconstruction
method
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plane gives an approximation to the real workpiece
deviation from the “ideal” vertical pose.

4.3 Pattern recognition

The proposed platform should be able to distinguish
between at least three different types of workpieces: one
with a smooth surface and two others with undulated
surfaces (vertical or horizontal) (Fig. 6). Each one of these
types of workpieces can have varying dimensions (Table 1).
The proposed system should be able not only to recognize
workpieces profile but also workpieces different sizes.

The recognition/classification of the workpieces profile
is carried out using a KNN classifier [4]. An N-dimensional
space is created extracting N features from the 3D
reconstructed models. Some workpieces are used for
training purposes, in other words, the N features are off-
line computed and then manually classified. When the
system is running, upon detecting a new workpiece, the
workpiece model is created, features are extracted and then
the distance to each one of the training points is computed

(within the feature space). Choosing the k-nearest points,
the workpiece under analysis will be attributed to the most
common class among the k-neighbors.

For this type of industrial application we cannot expect
less than an almost “perfect” classifier, i.e., one that would
return near 100% of accurate classification. Since after the
classification process a robot programme is uploaded to the
robot controller, a wrong classification could lead to
dangerous situations (collisions) and/or wasting of coating
product. To achieve such a classifier, instead of computing a
lot of common features and proceed to more complex
classifiers, research focused on the search for “good”
features. These “good” features will allow to distinguish
the different workpieces in a direct and easy way. The
selected features were d2mHoriz and d2mVert, both representing
the variance of depth in M slices of the 3D models (in
horizontal and vertical direction, respectively). The 3D
models are sliced horizontally and vertically as Fig. 11
suggests. Therefore, each d2m stands for the mean of the
variance on depth in those cuts, which themselves are built
up from Nc points. In this way, d2m is defined as:

d2m ¼ 1

M

XM
j¼1

1

Nc

XNc

i¼1

x j
i � x j

P

� �2 !
ð9Þ

Where xji is a point in cut j and xjP is the mean of points
in cut j.

Fig. 11 Sliced representations of the horizontal wavy-surface plate:
horizontal cuts (left) and vertical cuts (right)

Fig. 10 Plane representing the workpiece slope: front view (left) and
lateral view (right)

Table 1 Horizontal wavy-surface plate model sizes

Model Length (cm) Width (cm)

Model #1 80 40

Model #2 60 40

Model #3 61.5 48

Model #4 75.5 48

Model #5 56 38

Model #6 55 36.5

Fig. 9 Border points of a reconstructed workpiece
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4.3.1 Results and discussion

Results showing the reason for having near 100% of
accurate classification are presented in Table 2 and
summarized in Fig. 12. It can easily be seen that for
smooth surfaces, both d2mHoriz and d2mVert take small values.
On the other hand, an undulated surface presents high
depth variance according to the direction of the “waves”,
i.e., an horizontal wavy profile has high d2mHoriz and low
d2mVert, and vice-versa when thinking about a vertical
wavy profile. Results presented in Table 2 are average
values calculated from five tests for each different type of
workpiece profile.

With respect to a more general application where there is no
obvious distinction of objects with such a few features, more
complex and robust algorithms other than KNNs may be
applied. Classification algorithms based on artificial neural
networks (ANNs) [5] or support vector machines (SVMs) are
plausible solutions. However, these solutions would require a
greater number of training samples. As extensively shown in
the literature [36–38], designing this kind of classifiers with
very few training samples brings additional problems. The
design of the classifier is much more complex, and high
performance rates may not be achievable.

The implemented KNN classifier provides very good
results. The implementation is simple and, if needed, we
can always increase the training set later. This can be done
without changing code and having to run the training again,
as in the case of ANNs or SVMs. Adding training samples
in KNN means just more computation when testing. Even
for the application proposed in this paper, it may be
necessary to classify other type of workpieces. The
proposed solution is flexible and expansible enough to deal
with that situation, simply reinventing and exploring new
and “good” features to extract from the models.

Another totally different technique that could be
implemented eying the same goal of recognizing
objects is, for example, the attachment of RFID tags
in each workpiece. This technique allows classifying
the workpieces, but it requires that labels are manually
placed in each different workpiece (different in profile
and size). Moreover, with RFID tags we could not
estimate the workpiece deviation from its “ideal” pose.

The proposed platform allows us to compensate and
deal with such negative issues: Otherwise, we will be
forced to introduce new hardware in the system such as
transporting guides to maintain workpieces’ position
and orientation constant.

5 Robot programming from CAD

The “base” robot programmes are off-line generated from a
3D CAD model of each different workpiece (different in
profile and not in size). Robot programmes are designed so
that robot motion is parameterized with the workpieces
dimensions. These programmes are kept in the robots’
controller and called when needed.

Once CAD technology is today common throughout
industry, any user with basic CAD skills can be able to
generate robot programmes off-line from a CAD model. In
addition, the 3D CAD package (Autodesk Inventor) that
interfaces with the user is a well known CAD package,
widespread in the market at a relative low-cost. This system
works as a real human-robot interface where, through the
CAD, the user generates programmes for the real robot. The
methods used to extract information from the CAD models
and techniques to treat/convert it into robot commands have
been investigated and successfully implemented [39]. The
information needed to programme the robot (generation of
coating gun trajectories) is extracted from the 3D CAD
model of each different workpiece and from the virtual
robot paths that the user can easily define in the CAD
drawing (Fig. 13).

In order to achieve uniform coat thickness, the spatial
gun position, orientation and velocity should be planned
based on the local geometry of the free-form surface [40].
In this case study, it is desired that the plates can be coated

horizontal
wavy-surface

vertical
wavy-surface

smooth
surface

2
mVert

2
mHoriz

Fig. 12 Workpiece features

Table 2 Features values

Features d2mHoriz d2mVert

Smooth surface 0.7 0.8

Horizontal wavy surface 5.8 1.4

Vertical wavy surface 1.1 6.3
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according to their surfaces, e.g., horizontal wavy profiles
should be coated with vertical moves. Experiments were
conducted to evaluate the interface performance, and results
showed that the CAD-based system is easy to use and
within minutes an untrained user can generate a robot
programme for a new workpiece.

6 Experimental setup, results and future work

Results and critical analysis of the 3D reconstruction
process, pattern recognition and feature extraction have
been presented and discussed in previous sections. This
section aims to present an overview of the entire system

setup and its working performance. Figure 7 shows the
system setup where you can see a workpiece being
transported, the laser line projected onto the workpiece,
the camera capturing images and a MOTOMAN HP6
robotic arm equipped with an NX100 controller. Note that
both the laser (wavelength=650 nm, power=3 mW) and
camera (Imaging Source DMK 31BU03 [41]) are fixed.
The distance between the laser and the camera is 50 cm.
Figure 14 presents a detailed architecture of the platform,
where the off-line and on-line processes are highlighted.
The ambient light is controlled to be dark. In this way, the
laser line appears brighter in the images.

Once a new workpiece has been identified by the
system, multiple commands are immediately sent to the
robot controller. These commands contain information
about the type of workpiece (a “base” robot programme is
selected), workpiece size and the necessary slope adjust-
ments. It means that, after the scanning process the robot
receives the necessary information to perform the coating
process in an appropriate way. A video is a good way to
visualize the entire system setup and modus operandi [42].
The main quantitative results of the entire system are listed
below:

– In the process of 3D reconstruction, we have an
average of 2% of error as an upper bound.

– In terms of classification, we have near 100% of
accurate classification.

– The scanning time is imposed by the velocity of the
conveyor. For this particular process, the conveyor
velocity is 1 m/min.

These results are in line with the results obtained by
other similar studies (see Section 1.3). However, the

Robot Path

Horizontal wavy-surface plate

Fig. 13 A robot programme will be generated from this CAD model

O
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Generation of robot programs
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Calibration process

Computer

Robot controller Camera

Encoder Conveyor RobotLaser

IO IOParallel port
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Feature extraction and pattern

recognition
Robotic coating process

USB

Fig. 14 System architecture.
Off-line and on-line processes
are highlighted
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proposed platform has some important features that should
be highlighted:

– The workpiece profile is reconstructed using a simpli-
fied cloud of points. Other studies use different
methods for the same purpose [1, 17, 18].

– The proposed platform not only classifies workpieces
profiles but also provides information on the size and
slope of the workpiece under analysis. This is very
important for the adaptive behaviour that characterizes
the platform.

– The “base” robot programmes are off-line generated from
a 3D CAD model running on a commercial 3D CAD
package. This is an alternative to commercial computer-
aided robotics software, which can be an expensive
solution for many companies. This point reinforces the
low-cost character of the proposed platform.

The greatest difficulties we have encountered throughout
the research were:

– The calculation of workpieces slope.
– The development of a system able to deal with any

workpiece profile and size.
– The achievement of “good” features for the classifica-

tion phase. These features should be simple and size
invariant.

Generally speaking, the proposed platform works well
and meets the requirements previously defined. We can say
that the platform is flexible enough to adapt itself to each
workpiece conditions. The classification algorithm needs
further validation and development in order to make it more
robust and comprehensive. This is important, especially in
the definition of the features to extract from the workpieces,
other than those presented here.

7 Conclusions

An adaptive scheme for an industrial coating process of
small series was studied and developed. This is a low-cost
and fully autonomous system that allows adapting the
robot’s behaviour to different manufacturing situations. It
means that the robot is ready to work over any piece at any
time, and thus, small production series can be reduced to as
much as a one-object-series. No skilled workers and large
setup times are needed to operate it.

The proposed solution is a noncontact scanning system
where artificial vision together with laser triangulation
allows an accurate 3D reconstruction of workpiece
models. From those reconstructed models, features are
extracted and workpieces are classified with near 100%
of accurate recognition. Base robot programmes are

generated off-line from 3D CAD models of the work-
pieces. These programmes are automatically adjusted
with information from the reconstructed workpiece
models, adapting the robot coating movements to the
workpieces size and pose.

Experimental results showed that the proposed solution
proved to be efficient. Moreover, it can be applied not only for
spray coating purposes but also for many other industrial
processes where workpieces need to be recognized before
robot(s) working on them. For example, this solution can be
used for many different automatic manipulation processes or
for inspection purposes. Most of the existing systems similar
to ours (off-the-shelf and laboratory prototypes) are complex
to use, suffer from lack of portability and usually are highly
expensive when compared with the custom setup presented in
this paper.
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