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Abstract
Purpose – The purpose of this paper is to achieve reliable estimation of yaw angles by fusing data from low-cost inertial and magnetic sensing.
Design/methodology/approach – In this paper, yaw angle is estimated by fusing inertial and magnetic sensing from a digital compass and a
gyroscope, respectively. A Kalman filter estimates the error produced by the gyroscope.
Findings – Drift effect produced by the gyroscope is significantly reduced and, at the same time, the system has the ability to react quickly to
orientation changes. The system combines the best of each sensor, the stability of the magnetic sensor and the fast response of the inertial sensor.
Research limitations/implications – The system does not present a stable behavior in the presence of large vibrations. Considerable calibration
efforts are needed.
Practical implications – Today, most of human–robot interaction technologies need to have the ability to estimate orientation, especially yaw
angle, from small-sized and low-cost sensors.
Originality/value – Existing methods for inertial and magnetic sensor fusion are combined to achieve reliable estimation of yaw angle.
Experimental tests in a human–robot interaction scenario show the performance of the system.
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1. Introduction
It is of crucial importance for the robotics field, especially for
robot autonomy, to have the capacity to estimate orientation
of a body in three-dimensional (3D) space. Different
approaches have been used in estimating roll and pitch angles,
trying to create drift-free solutions (Rehbinder and Hu, 2004).
In this context, the yaw angle is more difficult to estimate due
to the fact that the gravity measured by accelerometers cannot
be used to help to estimate it. Thus, a common solution to
estimate yaw angles relies on the fusion of inertial and
magnetic sensing. Field et al. (2011) present a review on
motion capture technologies and current challenges associated
to their application in robotic systems. In fact, multi-sensor
fusion has been applied in many different ways to improve
human–robot interaction (Smits et al., 2006).

In recent years, diverse sensors have become increasingly
miniaturized (in size and weight) and cheaper. Inertial sensors
(accelerometers and gyroscopes) are no exception. However,
only recent advances in micro-electro-mechanical systems
(MEMS) have reduced their size and cost considerably, and

increased their accuracy. Inertial sensors perform well in
motion sensing because they operate regardless of external
references, friction, winds, magnetic fields, directions and
dimensions. As a drawback, most inertial sensors are
temperature-dependent and are not very well-suited for
absolute tracking due to error accumulation. On the contrary,
they perform better in sensing applications involving relative
motion or in the recognition of gesture patterns (Neto et al.,
2009). Inertial measurement units (IMUs) consist of a group
of inertial sensors that are combined into a unique system with
the aim to measure the orientation and position of the unit
throughout space and time.

Magnetic sensors, advantageously, allow obtaining an
absolute reference for the system in study and do not suffer
from the problem of drift that the inertial sensors suffer. A
major drawback of magnetic-based sensors is their sensitivity
to magnetic distortions in the Earth’s magnetic field. Thus, it
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is difficult to acquire reliable readings in the proximity of
moving magnetic fields, batteries and ferrous materials.

Other sensors such as optical sensors, ultrasonic sensors and
GPS-based systems, have been used for orientation and position
estimation. Many tracking systems are based on the combination
of different sensor types, hybrid solutions. There are many
possibilities to combine individual sensors into a new multi-
sensorial system. The positive aspects of different sensors can be
explored and combined, originating a “better” sensor. For
example, a digital compass, which provides body orientation, can
be composed by accelerometers, magnetometers and a
temperature sensor. This combination improves the long-term
stability and accuracy of data provided by the compass. The
small sensors that combine inertial and magnetic sensing are
usually called miniature magnetic and inertial measurement
units (MIMUs). Some studies combine accelerometers and
gyroscopes to achieve reliable orientation data (Foxlin et al.,
1998; Kubelka and Reinstein, 2012; Luinge, 2002). The Allan
technique can be used in analyzing and modeling the error of
inertial sensors (El-Sheimy et al., 2008). An interesting paper
presents a complementary filtering algorithm for estimating
orientation based on inertial/magnetic sensor measurements
(Calusdian et al., 2011). Vlasic et al. (2007) use inertial
sensors with ultrasonic detection for a practical outdoor
capture technique. Kourogi and Kurata (2003) developed a
system which estimates poses by integrating data from several
sensors attached to a human body using a Kalman filter. In
fact, Kalman filter is today extensively used in different
applications (Simon, 2001; Welch and Bishop, 1995). Miller
et al. (2004) report the use of a set of inertial sensors (three
sensors) to control the robot arm of NASA Robonaut. Also,
GPS-based systems have been used in combination with
inertial and magnetic sensors for motion tracking purposes
(Sukkarieh et al., 1999; Zhang et al., 2005). A navigation
system based on an IMU for walking persons within buildings,
where GPS is unavailable, is presented by Ojeda and
Borenstein (2007). A system for indoor 3D position tracking
recurring to an extended Kalman filter to fuse data from an
IMU and a marker-based video-tracking is presented by
Hartmann et al. (2010). A Kalman filter and particle filtering
are implemented on a set of low-cost positioning systems
(Khodadadi et al., 2010). A fast converging Kalman filter for
sensor fault detection is presented by Jayaram (2010).

Each different type of sensor has its own advantages and
disadvantages. How to effectively integrate/fuse multi-sensor
information is the question. Several multi-sensor data fusion
methods have been proposed over the years, combining
observations from different sensors to achieve “better”
descriptions of environments or processes of interest. Error
can arise from different factors and situations: misalignment of
sensors, calibration, bias, scale factor, thermal drift,
unpredictable magnetic fields, etc. Some error sources have a
random origin and can only be treated with stochastic
processes. To achieve the desired performance, great concern
must be paid in relation to all the possible sources of error
mentioned above. Jurman et al. (2007) present several
methods to maximize the performance of an MIMU in terms
of calibration and alignment of sensors. An IMU performance
has been compared with a Vicon system (Sessa et al., 2012).

Other authors approach the problem of motion detection
without significant drift (Zhou and Hu, 2007).

1.1 Proposed approach
The method proposed in this paper relies on multi-sensor data
fusion (a digital compass and a gyroscope) to obtain more
accurate and reliable yaw angle estimations. The digital
compass has embedded a 3-axis magnetic sensor (magnetic
sensing) and a 3-axis accelerometer (inertial sensing). It
provides roll, pitch and heading angles as well as acceleration
data. Heading is the angle between the North direction and
the direction of the longitudinal axis of the compass in the
horizontal plane. Note that heading data can be easily
transformed into yaw data by describing the data in relation to
a known frame. Digital compasses suffer from some of the
weaknesses associated with both magnetic and inertial
sensing. It can be reported that, for example, depending on
the geographical location and inclination of the compass, a tilt
measurement can affect heading accuracy. To achieve more
accuracy in yaw estimation, according to previous studies, a
Kalman filter can be applied to fuse heading measurements
from the compass with integrated angular rates from the
gyroscope (Figure 1). A body’s angular rate needs to be
integrated once to obtain a relative orientation angle, the yaw
angle in this scenario. In this context, the gyroscope measures
faster changes of orientation (short-term accuracy), thus
compensating for the weakness of the compass in this aspect.
On the other hand, the compass provides long-term stability of
output data. Thus, the individual strength of each sensor is
maximized. Roll and pitch angles given by the compass are
stable, as they are estimated by fusing data from the
magnetometers and accelerometers embedded into the
compass.

In summary, the capacity of different low-cost sensors is
explored and combined to achieve a major goal, reliable yaw

Figure 1 Layout of the system
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angle estimation. Experimental results indicate that the
proposed solution is able to eliminate the drift effect produced
by gyroscope data and, at the same time, has the capacity to
react to fast orientation changes.

2. Yaw estimation
To estimate “more reliable” yaw angles, it is proposed that a
Kalman filter be used to fuse heading/yaw data from a digital
compass with integrated angular rates from a gyroscope.
Thus, the strength of one sensor compensates for the
weakness of the other, that is gyroscope data compensate for
compass data in case of any disturbances and vice versa. In
addition, the gyroscope provides data reporting a faster
reaction to rotation. On the other hand, heading/yaw angles
from the digital compass contribute to determine an absolute
angle and to minimize errors (drift) produced by the
gyroscope.

Yaw angles estimated by integrating angular rates from the
gyroscope have an error that accumulates with time, so that
after a short period, the estimated angles can be totally
incorrect. In this way, only short-term accuracy can be
achieved using gyroscope measurements. In fact, in this
context, gyroscopes are characterized by their short-term
accuracy and long-term drift. Yaw angles from the compass
ensure long-term stability and reliability. On the contrary, the
magnetic sensing characteristics of the compass can lead to
distortions in estimated angles.

A body’s angular velocity needs to be integrated once to
obtain a relative orientation angle (the yaw angle in this case):

��t� � �0 � � ��t� dt (1)

The angular velocity � sensed by the gyroscope includes
components resulting from the Earth’s rotation and the sensor
motion. However, for the case of the low-cost MEMS with
drifts significantly exceeding the magnitudes of the
components referred to above, these terms can be omitted. In
summary, the gyroscope provides discrete angular rates, �̇g,
which are numerically integrated to obtain discrete angular
increments, ��g:

��g(k) � �̇g(k) �t (2)

These angular increments are added to obtain an estimate to
the yaw angle �g�n� at a time tn:

�g(n) � �c(0) � �
k�1

n

��g(k) (3)

The initial yaw estimate �c�0� comes from the digital compass,
so that �g�0� � �c�0�.

2.1 Modeling the system error
Kalman filter models should be simple enough to be
implemented and, at the same time, capable to accurately
represent the physical scenario in study. Modeling gyroscope
errors can be a difficult task because there are different error
sources and, usually, it is necessary to decide what are the
most important to take into account. The proposed approach

is based on previous studies in the field (Brown and Hwang,
1997; Kaniewski and Kazube, 2009; Kaniewski and Kazubek,
2011). Figure 2 shows the proposed solution to estimate yaw
angles from gyroscope and compass data. A Kalman filter is
used to estimate errors of gyroscope yaw angles, providing
such errors to the error updater. The error updater
accumulates them and computes the total estimated yaw error
��̂g, which is subsequently subtracted from the gyroscope yaw
angle �g, providing the estimated yaw angle �̂:

�̂ � �g � ��̂g (4)

2.2 Kalman filter – implementation
The system in study can be modeled (discrete model) as
follows:

xk�1 � �kxk � wk (5)

Where xk�1 is the process state vector at step k � 1, �k is the
state transition matrix from step k to step k � 1, xk is the
process state vector at step k and wk is a vector assumed to be
a white sequence with known covariance structure (process
noise). The observation/measurement of the process in study
is assumed to occur at a discrete time in accordance with:

zk � Hkxk � vk (6)

Where zk is a measurement vector at step k, Hk is a
measurement matrix and vk the measurement error vector.

Error in gyroscope measurements includes scale factor
error, bias and Gaussian white noise (Kaniewski and Kazube,
2009). Such errors can be modeled by the following:

��̇g � �k � � b � u� (7)

�k̇ � uk (8)

ḃ � ub (9)

Where ��g is the yaw error from the gyroscope, �k the scale
factor error, b the gyroscope bias and u�, uk and ub are the
forcing functions, that is Gaussian white noise with power
spectral densities S�, Sk and Sb, respectively (Petkov and
Slavov, 2010). Gyroscope error models in equations (7), (8)
and (9) can be presented in a matrix form:

Figure 2 Estimating yaw angles
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d
dt���g

�k
b
� � �0 � 1

0 0 0
0 0 0

�
Ç

F

���g

�k
b
� � �u�

uk

ub

� (10)

Where the state vector is:

x � ���g �k b 	T (11)

In equation (10), we have a linear continuous dynamic model
of the system in study, with the following general form:

ẋ � F x � u (12)

Where F is the fundamental matrix of the system and u a
vector of continuous random process disturbances. This
continuous model has to be converted into a discrete model of
the system (equation 5) (Brown and Hwang, 1997). The state
transition matrix can be determined by:

� � L �1��sI � F��1	t��t (13)

Where I is the identity matrix and s the Laplace variable. The
Gauss–Jordan method is applied to invert the matrix.
Applying the inverse Laplace transform to equation (13):

� � �1 ��g �t
0 1 0
0 0 1

� (14)

From equations (5), (10) and (14):

���g

�k
b
�

k�1

� �1 ��g �t
0 1 0
0 0 1

����g

�k
b
�

k

� wk (15)

Now, we need to achieve the covariance matrix Qk associated
with wk:

Qk � E�wkwk
T	 (16)

Where E [. . .] represents the expected value. The Qk elements
are calculated using the transfer function method as shown by
Kaniewski and Kazube (2009) and Brown and Hwang (1997):

Qk � 

Sb �t3

3
�

Sk ��g
2 �t

3
� S� �t

��g Sk �t

2
Sb �t2

2
��g Sk �t

2
Sk �t 0

Sb �t2

2
0 Sb �t

�
(17)

As indicated in Figure 2, the input for the Kalman filter is the
difference between the corrected gyroscope yaw �̂ � �g �
��̂g and the yaw angle from the compass �c. This is true
assuming that the compass has a zero mean error and the
gyroscope presents a considerable drift. Note that the
correcting term ��̂g is a component of the vector of
deterministic inputs �x̂. The measurement vector zk and the

vector of measurement noises vk become scalars z and vc,
respectively, so that:

Hk � �1 0 0 	 (18)

It is also necessary to establish the covariance matrix Rk of
measurement noises vk, which for this system is a scalar, equal
to the variance of the compass measurement errors vc. Rk can
be computed by taking some off-line sampling measurements.

We have now all the parameters necessary to implement the
Kalman filter algorithm, Figure 3, in which:
● x̂k�1|k is the predicted state vector at step k � 1 (before the

measurement update);
● x̂k�1|k�1 is the filtered state vector at step k � 1 (after the

measurement update);
● Pk�1|k is the covariance matrix of prediction errors;
● Pk�1|k�1 is the covariance matrix of filtration errors;
● Kk�1 is the Kalman gain; and
● �x̂k is the vector of corrections from the Kalman filter

(error updater).

It is necessary to establish an initial value for P, P0|0. If we are
absolutely certain that our initial state estimate x̂0|0 is correct,
we would let P0|0 � 0. However, given the uncertainty in our
initial estimate, choosing P0|0 � 0 would cause the filter to
initially and always believe that x̂k � 0. Thus, we could choose
almost any P0|0 	 0 and the filter would eventually converge.
In this case, we choose P0|0 � I, I being the identity matrix.
This choice for the identity matrix is due to the fact that this
initial covariance is considerably higher than the values for
which the filter stabilizes after converging. Also, it was verified
that this initial value is high enough to not affect the initial
convergence velocity.

3. Experiments and results
The experimental evaluation of the proposed platform to
estimate yaw angles from the fusion of inertial and magnetic
sensing consisted of a set of laboratory tests in which the
MIMU is attached to the user’s hand. The MIMU motion
tracking system is composed of a digital compass (OceanServer
OS500-USA) and a single-axis gyroscope (Epson Toyocom
XV-3500). The digital compass is tilt-compensated and
contains hard- and soft-iron compensation routines.

Figure 3 Kalman filter loop
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In a first experiment, the user’s hand is oriented to have a yaw
angle of about 18°. During this phase, the user causes the
hand to vibrate slightly to analyze the system behavior in such
conditions. Then, the hand is rotated to an angle of about 62°.
There follows a period in which the hand is static and after
that the hand is re-orientated for an angle of about 21°. The
results presented in Figure 4 contain recordings of yaw angles
from the compass, the gyroscope, (when applied) the Kalman
filter and a smoothed Kalman filter. The smoothing function
is a very simple one, in which for each point provided by the
Kalman filter, the average value is computed among its
previous three neighbors:

xi= �

2xi � �
j�1

3

xi�j

5
(19)

Analyzing the first phase of the experiment (until cycle time
60), the results produced by the Kalman filter and smoothed
Kalman filter are stable, in line with the angles provided by the
compass. In this phase, it is possible to see the effect of the
hand shake. In the end of this initial phase, it is possible to
see that the gyroscope reacts faster than the compass to the
variation in orientation. In line with the results provided by the
gyroscope, the Kalman filter also reacts fast to that change in
orientation. This is further evidence that the Kalman filter
takes advantage of the positive characteristics of the gyroscope
(short-term accuracy) and compass (long-term stability). This
aspect can be tremendously important for real-time feedback
applications. Between cycle time 60 and 100, the user’s hand
is static, keeping a yaw angle of about 62°. In this situation, the
gyroscope drift is clearly visible (Figure 4). After that, when
the user’s hand is re-orientated for an angle of about 21°, it is
possible to see in Figure 4 that one more time, the Kalman
filter helps the system to react fast to the change in orientation.
As a final remark, it can be stated that the Kalman filter helps
to preserve the fast response of the gyroscope and the
long-term stability of the compass, thus eliminating the
problem of increasing gyroscope errors.

In a second experiment, the same system was applied in
estimating the yaw angle when attached to a human hand
performing a pick-and-place operation, that is moving a bottle
from one location to another one (Figure 5). Details on the
complete system to 3D position and roll and pitch orientation
estimation can be seen in the article by Neto et al. (2013).
Figures 6 and 7 show the results in position and orientation
estimation, in which the estimated yaw angle is highlighted
with red color.

4. Conclusions and future work
A method for estimating reliable yaw angles from low-cost
inertial and magnetic sensors has been described. This
method is based on the fusion via a Kalman filter of magnetic
and inertial sensing. The Kalman filter allows to preserve the
fast response of the gyroscope and the long-term stability of

Figure 4 Estimated yaw angles
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Figure 5 Setup of the second experiment
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the compass, thus eliminating the problem of increasing
gyroscope errors (drift). It explores and combines the capacity
of different low-cost sensors to achieve a major goal, reliable
yaw angle estimation. Experimental results indicate that the
proposed solution is able to eliminate the drift effect produced
by gyroscope data and, at the same time, has the capacity to
react to fast orientation changes.

Future work will focus on reducing the error associated to
yaw estimation. One possible solution is the improvement of
the hardware that composes the MIMU, namely, in terms of
sensitivity and updating rate. In addition, a non-linear filter
should be implemented to validate the compass data before
entering the Kalman filter.

References

Brown, R.G. and Hwang, P.Y.C. (1997), Introduction to
Random Signals and Applied Kalman Filtering, John Wiley &
Sons, Hoboken, NJ.

Calusdian, J., Yun, X. and Bachmann, E. (2011),
“Adaptive-gain complementary filter of inertial and
magnetic data for orientation estimation”, 2011 IEEE
International Conference on Robotics and Automation, IEEE,
pp. 1916-1922.

El-Sheimy, N., Hou, H. and Niu, X. (2008), “Analysis and
modeling of inertial sensors using allan variance”, IEEE
Transactions on Instrumentation and Measurement, Vol. 57
No. 1, pp. 140-149.

Field, M., Pan, Z., Stirling, D. and Naghdy, F. (2011),
“Human motion capture sensors and analysis in robotics”,
Industrial Robot: An International Journal, Emerald, Vol. 38
No. 2, pp. 163-171.

Foxlin, E., Harrington, M. and Altshuler, Y. (1998),
“Miniature 6-dof inertial system for tracking HMDs”, SPIE
Helmet and Head-Mounted Displays III, Vol. 3362 No. 2,
pp. 214-228.

Hartmann, B., Link, N. and Trommer, G.F. (2010), “Indoor
3D position estimation using low-cost inertial sensors and
marker-based video-tracking”, IEEE/ION Position, Location
and Navigation Symposium, IEEE, pp. 319-326.

Jayaram, S. (2010), “A new fast converging Kalman filter for
sensor fault detection and isolation”, Sensor Review,
Emerald Group Publishing Limited, Vol. 30 No. 3,
pp. 219-224.

Jurman, D., Jankovec, M., Kamnik, R. and Topič, M. (2007),
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