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Unsupervised Gesture Segmentation by Motion
Detection of a Real-Time Data Stream

Miguel A. Simão, Pedro Neto, and Olivier Gibaru

Abstract—Continuous and real-time gesture spotting is
a key factor in the development of novel human–machine
interaction modalities. Gesture recognition can be greatly
improved with previous reliable segmentation. This paper
introduces a new unsupervised threshold-based hand/arm
gesture segmentation method to accurately divide con-
tinuous data streams into dynamic and static segments
from unsegmented and unbounded input data. This seg-
mentation may reduce the number of wrongly classified
gestures in real-world conditions. The proposed approach
identifies sudden inversions of movement direction, which
are a cause of oversegmentation (excessive segmentation).
This is achieved by the analysis of velocities and acceler-
ations numerically derived from positional data. A genetic
algorithm is used to compute feasible thresholds from cal-
ibration data. Experimental tests with three different sub-
jects demonstrated an average oversegmentation error of
2.70% in a benchmark for motion segmentation with a
feasible sliding window size.

Index Terms—Gestures, human–machine interaction
(HMI), motion, robotics, segmentation, unsupervised.

I. INTRODUCTION

F LEXIBLE industrial machines in general and robots in
particular are traditionally instructed either by text-based

programming or by direct control, using a teach pendant. The
ability to interact with a machine in a natural and intuitive way,
e.g., using hand/arm gestures, has brought important advances
to modern industry. The paradigm for robot usage has changed
in the last few years, from an idea in which robots work with
complete autonomy to a scenario in which robots cognitively
collaborate with human beings. This brings together the best
of each partner, robot and human, by combining the coordi-
nation and cognitive capabilities of humans with the robots’
accuracy and ability to perform monotonous tasks. This will
allow a greater presence of robots in our society, with a con-
sequent positive impact on life standards. The problem is that
the existing interaction modalities are neither intuitive nor re-
liable. Instructing and programming an industrial robot by the
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Fig. 1. Role of segmentation by motion in gesture recognition.

traditional teaching method is a tedious and time-consuming
task that requires technical expertise. The increasing demand by
industry for robot-based solutions makes the need for intuitive
human–machine interaction (HMI) more visible, especially in
small- and medium-sized enterprises.

Multimodal interfaces combining gesture-, speech-, and
tactile-based actions are expected to be in a near future the
standard for HMI. Nonverbal communication cues in the form
of gestures are considered to be an effective way to approach
intuitive HMI. For instance, a person can point to indicate a
position to a robot and use a dynamic gesture to instruct a robot
to move and a static gesture to stop the robot [1]. In this sce-
nario, the user has little or nothing to learn about the interface,
focusing on the task and not on the interaction modality.

Temporal gesture segmentation from a real-time data stream
is the problem of identifying data segments that are more likely
to contain meaningful interactions. This may increase the reli-
ability of subsequent pattern recognition. Most of the classifi-
cation algorithms only present reliable results if the input data
roughly represent a specific gesture on its database (previously
trained—supervised method). A major challenge in continuous
gesture recognition has to do with the fact that there are move-
ment segments between gestures that have no meaning. Such in-
tergesture transition periods are known as movement epenthesis
(ME). Most studies treat ME as a classification problem [2], [3].

An effective segmentation is achieved with no previous
knowledge of gesture data, no training, and no information
about the next gesture in the sequence. In general, there are two
major difficulties in the segmentation process of a real-time
stream of data.

1) Stream unboundedness: no information about when a ges-
ture starts and ends in a continuous sequence.

2) Spatiotemporal variability: a gesture may vary in shape,
duration, and trajectory, even when it is performed by the
same person.

Fig. 1 highlights the role of segmentation by motion as a
preprocessing step before the classification of static/dynamic
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gestures and ME. Static segments will serve as input only to the
static gesture pattern classifier. On the contrary, when there is
motion, the data are not used to feed the static gesture classifier.
In the presence of dynamic segments, the recorded data can have
different meanings, i.e., the segment can be classified either as
a dynamic gesture or as ME. This is a classification problem, in
which the dynamic gestures and ME can be correctly recognized
if they were previously trained. ME classification based on its
training is nonnatural so that most authors exclude ME from
trained gesture patterns.

A. Problem Specification and Challenges

A major problem in gesture-based HMI is related to the
reliable recognition of gestures continuously from real-time
streams. Continuous gesture recognition is the natural way used
by humans to communicate, in which communicative gestures
(with an explicit meaning) appear intermittently with pauses and
ME, without a specific order.

It is difficult to accurately segment continuous data streams
to feed the classifiers. It depends on several factors:

1) interaction technologies
2) classification method (supervised or unsupervised);
3) if gestures are static, dynamic, or both;
4) if ME was previously trained or not, among other factors.

Another problem is related to the difficulty to eliminate the
appearance of false positives and false negatives (leading to
oversegmentation).

In the context of gesture segmentation, it can be stated that
false negatives are more costly than false positives, since they
divide the data representing a dynamic gesture into two sections,
completely corrupting the meaning of that gesture. False pos-
itives are more easily accommodated by the classifier, which
just reports that the pattern is not a trained gesture. Several
challenges in gesture segmentation can be pointed out.

1) creating an unsupervised segmentation technique that is
robust enough to accurately divide a data stream into
dynamic and static segments without false negatives and
false positives, avoiding over/undersegmentation;

2) avoiding false negatives in the segmentation of dynamic
gestures by anticipating inversions of movement;

3) achieving real-time performance and being able to seg-
ment gestures in continuous streams;

4) being user independent.

B. Related Work

Offline analysis of gesture segmentation by motion detection
has been applied with relative success, for example, by com-
puting the variance of motion data and applying a threshold
that defines if motion exists or not. Many existing segmentati-
on techniques use the backward spotting scheme to first detect
the end point of a gesture and then traces back to the starting
point. The problem is that in this methodology, the real time is
lost, making it unsuitable for continuous gesture recognition [4].
This problem can be solved by implementing a forward spotting
scheme for simultaneous gesture segmentation and recognition,
in which the start and end points of a gesture are determined
by zero crossing from negative to positive (and vice versa) of

a competitive differential observation probability [4]. This is
a supervised automatic threshold method based on the com-
parison of the probability of a given frame being a gesture or
nongesture.

A reference study in the field reports the application of an
adaptive threshold [5]. Such adaptive threshold is based on the
addition of an additional label to the conditional random field
(CRF) model to overcome the weakness of the fixed threshold
method. Initial training is necessary for the CRF.

Interesting studies in the field propose a method for spotting
gestures in continuous data by using hidden Markov models [6].
They apply a threshold model that calculates the likelihood
threshold of an input pattern. The start and end points of a gesture
are defined by comparing the threshold model with predefined
gesture models.

A fuzzy machine-vision-based framework for humans’ be-
havior recognition that relies on the analysis of feature cues
reporting the human silhouette was studied in [7]. Meaningful
movements can be recognized while concurrently separating
unintentional movements from a given image sequence [8]. The
importance of the selection and adaptation of the window data
length and its dependence on the complexity, duration, and gran-
ularity of the human activities to recognize is demonstrated in
[9]. An analysis of motion segments using principal component
analysis to represent hand motion is in [10]. This method allows
us to reduce the data dimensionality, but according to our expe-
rience and real-time requirements, this can be a computationally
expensive solution, depending on the size of input data, and in
which important information for the segmentation process may
be lost. An automated process of segmenting gesture trajecto-
ries based on a simple set of threshold values is proposed in
[11]. The gesture segmentation process is also highlighted in a
study on vision-based action recognition for the human entire
body considering a large vocabulary of gestures [12]. A dif-
ferent approach is to study the perception of human postures
and gestures recurring to a markerless vision-based solution
for upper body tracking with multiple cameras [13]. An unseg-
mented/unbounded vision-based continuous gesture recognition
system is presented in [14]. For a library of ten body-and-hand
gestures, the achieved recognition accuracy was 94% for iso-
lated gestures and 88% for continuous gestures. This clearly
shows the importance of segmentation for continuous gesture
recognition.

An approach to gesture spotting in a continuous data stream
from body-worn inertial sensors is presented in [15]. A recent
study reports the separation of acceleration and surface elec-
tromyography (EMG) signals as a mean to segment gesture
data [16].

Regarding the role of ME in gesture segmentation, some au-
thors try to solve this problem by developing temporal gesture
models which address the problem of ME detection without the
need for explicit epenthesis training [3], while other authors train
ME [1], [5], [6]. In both cases, ME is analyzed in the context
of a classification problem requiring previous training. Previous
studies demonstrated that approaches that explicitly model ME
yield better results than those ignoring ME [1]. However, mod-
eling ME is difficult and its complexity increases exponentially
with the number of distinct gestures.
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Complex human activity recognition in sensor rich environ-
ments has been studied in the last few years [17], [18]. A
multimodal segmentation method that merges information from
inertial sensors (IMUs), muscle activity and location (RFID) is
presented in [17]. A string-matching-based segmentation and
classification method is also presented to recognize activity us-
ing wearable devices with limited computational power [17].
Online gesture recognition for wearable computing purposes
based on crowdsourced annotations is in [18]. In this study, seg-
mentation and warping longest common subsequence algorithm
are applied as template matching methods. Wearable accelerom-
eters have been successfully applied for human activity recog-
nition. A framework for the recognition of motion primitives
relying on Gaussian mixture modeling and Gaussian mixture
regression is presented in [19]. A recognition procedure based
on dynamic time warping and Mahalanobis distance is proposed
to ensure runtime classification.

Analyzing existing studies allows us to conclude that most
studies approach the segmentation problem together with classi-
fication, requiring previous training—supervised methods. This
paper approaches segmentation by motion in an unsupervised
and computationally inexpensive fashion.

C. Proposed Approach and Overview

Real-time segmentation relies on the comparison of the cur-
rent state (frame) f i with the previous states, {fi−1 , . . . , fi−n}. A
fixed threshold is a very limitative solution for motion segmen-
tation. Existing studies present excellent results using automatic
threshold methods or adaptive thresholds for gesture segmenta-
tion [4], [5]. However, such approaches are supervised, requiring
a significant amount of training data from specific users.

This paper proposes a novel method to segment a continuous
data stream into dynamic and static segments in an unsupervised
fashion, i.e., without previous training or knowledge of gestures
and the sequence, unsegmented, and unbounded. We propose es-
tablishing a feasible (it can be optimal or not) single threshold for
each motion feature using a genetic algorithm (GA)—because
the performance function is nonlinear and nonsmooth—fed by a
set of calibration data. Gesture patterns with sudden inversions
of movement direction are analyzed recurring to the analysis of
velocities and accelerations numerically derived from positional
data. The proposed method deals with hand/arm gesture motion
patterns varying in scale, rate of occurrence, and different kine-
matic constraints. A sliding window addresses the problem of
spatiotemporal variability.

The proposed system was evaluated by conducting experi-
ments using a set of continuous dynamic and static gestures
(see Section III). Experimental tests were carried out using
wearable/body-worn sensing (a data glove and a magnetic track-
ing device) and demonstrated the following.

1) Motion is always detected for any gesture in a continuous
sequence of unsegmented and unbounded data.

2) It is an unsupervised method, no prior training.
3) A quantitative analysis with samples from three different

subjects indicates an oversegmentation error of 2.70%
with a feasible sliding window size. For an optimal sliding
window size (subject A), the error is 0%.

4) Segmented data present in most cases a shift-right and
extend behavior in relation to the ground truth.

5) The GA to search for feasible thresholds demonstrated
reliability for various subjects.

6) Velocity and acceleration features have to be combined
to deal with sudden inversions of movement direction.

7) The proposed fine segmentation method reduces the noise
in data for subsequent classification.

8) The system accepts any sequential positional data as input
from different sensors: inertial, vision, etc.

II. GESTURE SEGMENTATION

A. Sliding Window Threshold Decision Method

The absence of movement can be defined by the lack of
change in every degree of freedom (DOF) of a given system. At
rest, natural human body shaking generates noisy DOF deriva-
tives. To separate their noise from an actual static stance, there
was a need to set a threshold for each of the features. We con-
sider that there is motion if there are motion features above the
defined thresholds. Section II-B shows how the feasible thresh-
olds are achieved. The threshold is a vector t0 , with a length
equal to the number of motion features chosen, nt . The features
obtained from a frame are represented by the vector t. The slid-
ing window T is composed of w consecutive frames of t. At an
instant i, the real-time sliding window T(i) is given by

T(i) =
[
t(i− w + 1) · · · t(i− 1) t(i)

]
(1)

At each instant i, the w sized window slides forward one frame
and T(i) is updated and evaluated. A static frame is only ac-
knowledged as such if none of the motion features exceed the
threshold within the sliding window. This way, we guarantee that
a motion start is acknowledged with minimal delay (real time).
On the other hand, this also causes a fixed delay on the detection
of a gesture end, equal to the size of the window w.

The proposed method to achieve the motion function m(i)
relies in the computation of the infinite norm of a vector a that
contains featurewise binary motion functions

m(i) =

{
1, if ‖a‖∞ ≥ 1

0, otherwise
(2)

where vector a, for each instant of time i, is calculated by
comparing the sliding window with the threshold vector

am = (max
n
|Tmn| ≥ ks · t0m

), m = 1, . . . , nt ,

n = 1, . . . , w
(3)

in which ks represents a user-defined threshold sensitivity factor.
A possible result for a single feature tm is shown in Fig. 2.
A motion segment starts as soon the feature rises above the
threshold. On the other hand, even after the feature drops below
the threshold, the segment is not finished until a full window of
frames is below the threshold.

B. Threshold Definition

Calibrating the threshold t0 in an unsupervised fashion is
not a straightforward task because it depends on several factors,
namely the input data/devices, selected features, sliding window
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Fig. 2. Sliding window threshold decision method for motion detection.
Two motion segments are represented.

size, and the device wearer himself. If the parameters are set too
low, it can become oversensitive and generate too many false
positives, declaring motion when there is noise. If they are set
too high, it will not be capable of detecting slow movements,
generating false negatives and oversplitting the stream. Thus, a
balance must be found.

The authors recommend obtaining two distinct sets of data
(which we call calibration data) with equal length/time ts .

1) A static sample CS , with dimension nt × ts , recorded
with the user at rest. The target motion function is equal
to 0, with dimension 1× (ts − w + 1).

2) A motion sample CM , with dimension nt × ts , recorded
with the user performing slow movements that acti-
vate the selected motion features to establish minimum
thresholds. These movements are done randomly and
should trigger every motion feature. The target motion
function is constant and equal to 1, with dimension
1× (ts − w + 1).

The matrices CS and CM establish what we call the ground
truth for the process of calibrating the features’ thresholds t0 .
This is not considered training as it is performed by the user
in a short span of time, and the samples do not need to have
meaningful gestures.

The calibration process seeks to minimize the error of the
sliding window applied to the calibration data. The window
size is kept fixed and the variables are the motion features’
thresholds. The error E is the objective function to minimize
(4). It has two terms: one corresponding to error for the static
sample, eS , and the error for the motion sample, eM

E =
ts∑

i=w

eS (i) + eM (i) (4)

where eS and eM are binary functions computed from the sam-
ples CS and CM , and m is a binary motion function

eS (i) =

{
0, if m (CS (i)) = 0

1, if m (CS (i)) = 1
(5a)

eM (i) =

{
0, if m (CM (i)) = 1

1, if m (CM (i)) = 0.
(5b)

Fig. 3. Error dependence on threshold value and sliding window size.

It is recommended to calibrate each threshold individually,
implementing the motion function m(i) with a single motion
feature. Each threshold is updated to approximate the segmen-
tation output to the ground truth.

Since the objective function is nonlinear and nonsmooth, the
chosen algorithm was a GA. The GA benefits from having its
variables constrained. The lower limit should be zero, and the
upper limit can be the maximum values of the ground truth
motion features. Fig. 3 shows that for this use case, there are
different values for the thresholds and sliding window size that
when combined conduct to zero error. The proposed algorithm
for the motion function in pseudocode is as follows.

C. Motion Features

In an ideal system, the absence of movement would be defined
by null differences of the system variables between frames.
Therefore, the simplest set of features that can be used for this
method is the frame differences, �f , that at an instant i is
given by

Δf (i) = f (i)− f (i− 1) . (6)

However, these features do not yield consistently reliable results.
For example, if we consider as input a position in Cartesian co-
ordinates, this approach performs poorly, since the differences
would be relative to the coordinated axis. A motion pattern with
a direction oblique to an axis would have lower coordinate dif-
ferences compared to a pattern parallel to an axis with similar
speed, thus producing different results. This issue can be solved
by replacing the three coordinate differences with the respec-
tive Euclidian length, d(i), which is a value proportional to the
average speed between frames, here denominated by v(i)

v (i) =
√

Δx(i)2 + Δy(i)2 + Δz(i)2 , i ∈ R+ (7)

where Δx(i) = |x (i− 1)− x (i)|. The same reasoning for by
Δy(i) and Δz(i).

In the presence of gesture patterns with sudden inversions
of direction, false negatives are very detrimental to the classi-
fier accuracy. The proposed solution is adding an extra motion
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Algorithm 1: SlidingWindow(O, n, t, ks , w).
inputs: O observations matrix

n number of observations to evaluate
t threshold vector
ks threshold sensitivity factor
w window size

output: m motion function
1: for i ∈ [1,LENGTHt] do �Apply sensitivity factor.
2: t(i) ← ks · t(i)

3: end for
4: l← n + w − 1
5: F ← GETFEATURESO�Calculate the features

from the obtained observations, (7) and (8).
6: for i ∈ [1, l] do �Obtain the motion binary function.
7: m(i)← 0
8: for j ∈ [1, LENGTHt] do
9: m(i)← (F (i,j ) ≥ t(i)) ∨m(i)

10: end for
11: end for
12: for i ∈ [1, n] do �Search for motion in sliding

window.
13: for j ∈ [1, w − 1] do
14: m(i)← m(i) ∨m(i + j)
15: end for
16: end for

feature, the acceleration, v̇(i). The acceleration is at its highest
when an inversion of direction occurs, which solves the low
velocity problem. This feature does not cause false positives
in a static gesture and deals successfully with the inversions
of movement on dynamic gestures. The average acceleration
between frames is proportional to the difference of velocities

v̇ (i) = v (i)− v (i− 1) . (8)

In Fig. 4, the shaded areas imply that a variable is below the
threshold, meaning an absence of motion in the variable.

III. TESTING METHODOLOGY

The performance of the proposed segmentation by motion
methodology was evaluated in different tests performed by dif-
ferent subjects. Experimental tests were conducted with partic-
ipants wearing a data glove and a magnetic tracker device. The
participants performed a number of gestures (static, dynamic,
and ME), while the segmentation system was detecting motion
in real time from the gesture dataset. The results are compared
and discussed, even with a supervised method. The algorithm
has order O(n), in which n is the number of motion features.

A. Interaction Technologies and Data Acquisition

Two different sensors are used to acquire human behavior
during the interaction process: a magnetic tracker device (hand
and arm motion) and a data glove (finger motion).

The electromagnetic tracker (Polhemus Liberty) provides the
position and orientation of the sensor in relation to a magnetic

Fig. 4. Example of kinematic quantities in a dynamic gesture with sud-
den direction change. The flat shade represents acceleration below the
threshold and the stripe shade the velocity below the threshold. If they
overlap during a large enough number of frames, a false negative will be
triggered.

source in a total of six DOFs, l(i) = (l1 , l2 , . . . , l6), in which
i represents a frame at a certain instant of time. The first three
indexes describe the position along the three coordinated axes,
(x, y, z)i = (l1 , l2 , l3)i . The last three indicate the angles yaw,
pitch, and roll, respectively, (Ψ, θ, φ)i = (l4 , l5 , l6)i .

The data glove (CyberGlove II) has 22 resistive bend sensors
integrated: three flexion sensors per finger, four abduction sen-
sors, a palm-arch sensor, and sensors to measure wrist flexion
and abduction g(i) = (g1 , g2 , . . . , g22)i . The system provides
a low-accuracy timestamp for each frame based on software
running time, tg .

Data from the glove and the tracker are acquired and saved
on device-specific buffers. These buffers are then sampled for
the newest samples and processed at 20 Hz. Since the sensors
have different rates, the remaining (older) frames of the faster
device are dropped. The frames from both devices are then con-
catenated into one single vector f (9) and put in a circular buffer

f(i) = (tl , l1 , l2 , . . . , l6 , tg , g1 , g2 , . . . , g22)i . (9)

During sampling, to synchronize the system’ s output with
the actual gesture (ground truth), the sampling sessions were
recorded using a consumer grade camera at 30 Hz. The actual
gestures were recorded as well as the system’ s graphical user
interface, showing the segmented data stream.

B. Gesture Dataset

According to the functionalities to be achieved and based on
[1], a dataset of continuous static/dynamic gestures, including
ME, was created to test the developed method. It is our aim
to have gestures containing fingers and arm motion from wear-
able sensing data, with different lengths (0.5–2 s), including the
transition data between gestures. There is an infinite number of
possible combinations of individual gestures to create a gesture
sequence. A representative sequence of eight gestures that trig-
gers most of the variable’ s thresholds was selected (see Fig. 5).
The sequence was performed 20 times by each participant (sub-
jects A, B, and C), summing up to 480 gesture samples. The
sequence samples have an average of 16 s of data recorded at a
rate of 100 Hz.
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Fig. 5. Gesture sequence performed during the sampling process to create the dataset. ME represents movement epenthesis with associated
motion segments.

C. Motion Features and Sliding Window

The proposed motion features are: wrist velocity (one DOF),
wrist acceleration (one DOF), wrist angular velocity (one DOF),
and finger joint angular velocities (21 DOFs). These features are
organized in a feature vector t:

t(i) =
[
v(i) ˙v(i) ω(i) ġ1(i) · · · ġ22(i)

]T

. (10)

The wrist velocity v(i) is defined by

v (i) =

√
�l21 +�l22 +�l23
tl (i)− tl (i− 1)

(11)

where Δlh = lh(i)− lh(i− 1), 1 ≤ h ≤ 3. The wrist
acceleration is

v̇ (i) =
|v (i)− v (i− 1)|
tl (i)− tl (i− 1)

. (12)

The wrist angular velocity is

ω (i) =

√
�l24 +�l25 +�l26
tl (i)− tl (i− 1)

(13)

where Δlq = lq (i)− lq (i− 1), 1 ≤ q ≤ 3. The finger joint
angular velocities are

ġn (i) =
|gn (i)− gn (i− 1)|

Δtg
, n = 1, 2, . . . , 22. (14)

In (14), Δtg is the average period of the glove’ s output
(10 ms).

D. Threshold Calibration

For the threshold calibration, two samples of motion features
(10 s each), during static and moving poses, were acquired. The
window size was kept fixed at 20 frames (200 ms) in order to
minimize segmentation delay. The calibration was implemented
using Solver’ s Evolutionary GA [20]. The algorithm was run
for each feature individually with a population size of 100 and
a mutation rate of 0.075 (parameters determined by trial and
error). The convergence time of the GA is about 1 min. The
local minimaare shown in Fig. 6. Some of the features have
very high objective function values (error next to 1000), which is

Fig. 6. Feasible thresholds and the objective function values for each
of the features.

explained by poor correlation between the respective feature and
the samples’ segmentation ground truth (features 3, 4, and 21).
This is most likely caused by low activation of some sensors by
the sampling movements. Nevertheless, when all the thresholds
are applied concurrently, the objective function drops to the
size of the window size. This amount of error is anticipated
by the method and is the minimum attainable, so the authors
considered the process to be complete. For testing, a value of
3.0 to the threshold sensitivity factor ks was considered.

E. Performance Parameters

This study proposes the following quantitative parameters to
measure segmentation accuracy: average start delay Δs (ms),
average end delay Δe (ms), segmentation error Serror, segmen-
tation accuracy SA, and extend level EL.

The start delay represents the delay between the start of the
motion (ground truth) and the timing in which the proposed
system detects such motion, including all processing and com-
munications delay. It is calculated by

Δsi =
∑

i SSi − GSi

N
· 1000

FR
. (15)

As shown in Fig. 7, SSi is the segmentation start frame num-
ber for gesture sample i, GSi is the ground truth gesture start
frame, FR is the video capture frame rate, and N is the total
number of samples. The end delay represents the delay between
the end of the motion (ground truth) and the time of which the
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TABLE I
PERFORMANCE PARAMETERS FOR THE SAMPLES IN THE DATASET

Performance parameters Subject Method Gn 1 Gn 2 Gn 3 Gn 4 Gn 5 Gn 6 Gn 7 Gn 8 Average

Serror(%) A Unsupervised 0.0 0.0 0.0 10.0 0.0 0.0 0.0 0.0 1.3
Serror(%) B Unsupervised 0.0 0.0 9.5 4.8 9.5 0.0 0.0 0.0 3.6
Serror(%) C Unsupervised 0.0 0.0 0.0 20.0 0.0 0.0 10.0 0.0 3.8
Serror(%) A Supervised 5.0 0.0 0.0 0.0 25.0 5.0 0.0 0.0 4.4
Serror(%) B Supervised 30.0 40.0 25.0 65.0 55.0 0.0 35.0 70.0 40.0
EL(%) A Unsupervised 25.3 −1.8 10.0 2.7 14.8 −10.5 14.5 17.8 9.1

Gn indicates the gesture number in the dataset.

Fig. 7. Example of an output segment and the corresponding ground
truth. The GSi , SSi , GEi , and SEi parameters are acquired in the testing
phase.

proposed system detects the end, including all processing and
communications delay

Δei =
∑

i SEi − GEi

N
· 1000

FR
(16)

where SEi is the segmentation end frame number for gesture
sample i and GEi is the ground truth gesture end frame.

The segmentation error Serror is the fraction between the num-
ber of segmentation errors (the sum of the number of times a ges-
ture is oversplit and false segments of motion) and the number
of samples

Serrori =
# of segmentation errors

N
· 100. (17)

For window size comparison, we define the segmentation
accuracy for a given sample i as

SAi =
max(RSE)− RSE
max(RSE)− ESE

· 100 (18)

where RSE stands for the number of reported start events and
ESE is the number of expected start events.

The extend level, EL, measures the discrepancy in length
between the ground truth and the system output. This indicates
that relevant data for the gesture recognition are captured, but
some noise is also captured

ELi =
SDi − GDi

GDi
=

Δei −Δsi

GDi
. (19)

F. Results and Discussion

For a window size of 20, the average Serror was 1.3% for sub-
ject A, 3.6% for subject B, and 3.8% for subject C (see Table I).
The discrepancy between the results for each subject is justified
by their familiarity with the gestures. Subjects B and C did not

calibrate the system not practiced the gesture sequence, which
led to hesitation and pauses during the gestures (oversegmenta-
tion). If a larger window size were used, the number of errors
would have been significantly lower for subjects B and C. Fig. 8
shows the plotted motion features over time during a sampling
session performed by subject A. The segmentation output re-
sults are superimposed onto the ground truth as seen by the user.
False negatives were detected only in gesture 4 due to a long stop
during the inversion of movement. The position-related features
from the magnetic tracker (feature 1—v(i), feature 2— ˙v(i), and
feature 3—ω(i)) have higher resolution and accuracy than the
other features, so that they are easier to calibrate. Consequently,
the thresholds are lower, and when the data are normalized, the
resulting values are higher than the other features.

The average segmentation start delay for subject A was
230 ms, while the end delay was 296 ms (the same behavior
for the other subjects). The gesture end delay was higher, as
expected, because of the sliding window. Nevertheless, the dif-
ference is 66 ms, considerably less than the size of the window
(200 ms). The most likely reason for this is asymmetry between
the features at the start and end of a gesture, a slow start, and a
fast end for a given gesture. The total delay should not be prob-
lematic for the subsequent classification process, since most of
the gesture data is within the output segment (see Fig. 9). The
segmentation start delay Δs has two main components: 1) the
feature capture/processing delay CD; and 2) the method’ s de-
lay MD. For this study, MD is the most relevant, since CD
changes according to the code efficiency and sensor latency.
The total delay can be seen in Fig. 9. The fraction of the delay
corresponding to the method itself in our experiments is from
15% to 35%. This originates from the time the features need to
reach the threshold, while the gesture is speeding up.

Segmentation performance depends largely on the size of
the sliding window. The segmentation accuracy SA was mea-
sured for different sliding window sizes with a fixed threshold
(see Fig. 10). Initially, with small sliding windows, there is ex-
cessive segmentation (oversegmentation), i.e., every peak of the
features is considered a segment. This leads to low accuracy.
Nevertheless, the accuracy quickly rises to 100% at a window
size of 24 frames. The window size used in the previous tests
was below this value (20 frames), hence the oversegmentation
errors on gesture 4. The accuracy then plateaus at 100% until
window sizes of 65 frames. It then drops, but this time because of
undersegmentation. Undersegmentation occurs when a gesture
is detected but its end is not. This causes consecutive gestures to
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Fig. 8. Data from one of the samples in the dataset (performed by subject A). On the top, the features over time are normalized and colormapped.
Below that, the features are normalized by the threshold and plotted over time.

Fig. 9. Gesturewise average segmentation delay for subject A.

overlap. The accuracy plateaus again at higher window sizes, at
which point all sample gestures are overlapping into one single
segment. Fig. 10 demonstrates that the proposed method be-
haves as in [4]. The segmentation accuracy is improved initially
as the size of the sliding window increases and degrades as the
window size increases further. Different classification methods
tolerate different segmentation delays for gesture start, gesture
end, and extend level [18]. The results obtained compare favor-
ably with the best results in the literature.

The proposed system was compared with a supervised method
(see Table I). A one-class feed-forward neural network was
used, having as input the sliding window data and a single
output neuron outputting a motion index. It was trained with
the same calibration data applied in the unsupervised method
(only data from subject A like in the unsupervised method).
Results compare unfavorably with the proposed unsupervised
method due to the frequent oversegmentation, especially for
subject B (Serror of 40%) that tested the system trained with
calibration data from subject A. These results indicate that

Fig. 10. Segmentation accuracy variation according to sliding window
size for the fixed thresholds established in Fig. 6.

the proposed unsupervised method can be considered user
independent.

IV. CONCLUSION AND FUTURE WORK

This paper presented a novel method for unsupervised con-
tinuous gesture segmentation by motion detection. It can be
concluded that the proposed solution accurately divides a con-
tinuous stream of motion data in static and dynamic segments.
A quantitative analysis with samples from three subjects in-
dicates an oversegmentation error of 2.70% for a feasible
sliding window size of 20 frames, and 0% for an optimal slid-
ing window size (subject A). Segmented data present in most
cases a shift-right and extended behavior when compared to the
ground truth. The automatic definition of feasible thresholds
vector using a GA demonstrated reliable behavior. Acceleration
features demonstrated to be necessary to achieve better segmen-
tation for gestures with sudden inversions of movement direc-
tion, avoiding the appearance of false negatives. The proposed
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unsupervised segmentation method reduces the noise in input
data for subsequent classification.

Future work will be dedicated to testing the proposed solution
with other interactions technologies: vision, IMUs, and EMG.
Additional efforts will be dedicated to improve the accuracy in
computing velocity and acceleration features by filtering them.
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