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a b s t r a c t 

Continuous gesture spotting is a major topic in human-robot interaction (HRI) research. Human gestures 

are captured by sensors that provide large amounts of data that can be redundant or incomplete, cor- 

related or uncorrelated. Data dimensionality reduction (DDR) techniques allow to represent such data in 

a low-dimensional space, making the classification process more efficient. This study demonstrates that 

DDR can improve the classification accuracy and allows the classification of gesture patterns with incom- 

plete data, i.e., with the initial 25%, 50% or 75% of data representing a given dynamic gesture (DG) - time 

series of positional and hand shape data. Re-sampling raw data with bicubic interpolation and principal 

component analysis (PCA) were used as DDR methods. The performance of different classifiers is com- 

pared in the classification 95 different signs of the UCI Australian Sign Language (High Quality) Dataset. 

Experimental tests indicate that the use of PCA-based features result in a classification accuracy that is 

higher with 25% of gesture data (93% accuracy) than with 100% of gesture data (82% accuracy). These re- 

sults were obtained from a non-trained data set and the recognized gestures are used to control a robot 

in an collaborative process. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

The ability to interact with a robot in a natural and intuitive

ay, for example using speech and gestures, has brought important

dvances to the way our societies look to robots. The paradigm

or robot usage has changed in the last few years, from a con-

ept in which robots work with complete autonomy to a scenario

n which robots cognitively collaborate with human beings. This

rings together the best of each partner, robot and human, by com-

ining the coordination and cognitive capabilities of humans with

he robots’ accuracy and ability to perform monotonous tasks. For

his end, robots and humans have to understand each other and in-

eract in a natural way, creating a co-working partnership. This will

llow a greater presence of robots in our companies, schools, hos-

itals, etc., with consequent positive impact on society’ s life stan-

ards. The current problem is that the existing interaction modali-

ies are neither intuitive nor reliable. Instructing and programming

n industrial robot by the traditional teaching method is a tedious

nd time-consuming task that requires technical expertise. 

The robot market is growing and the human-robot interaction

HRI) interfaces will have a main role in the acceptance of robots
∗ Corresponding author. 
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s co-workers. Gestures and other natural interaction modalities

ay decrease the need for technical expertise in robot program-

ing, therefore decreasing the cost of owning a robot. 

Multimodal HRI interfaces combining gestures, speech and tac-

ile based-actions are expected to be in a near future the standard

or a reliable and intuitive interaction process. Nonverbal commu-

ication cues in the form of gestures are considered to be an effec-

ive way to approach natural HRI. For instance, a person can point

o indicate a position to a robot, use a dynamic gesture to instruct

 robot to move and a static gesture to stop the robot [17,24] . In

his scenario, the user has little or nothing to learn about the in-

erface, focusing on the task and not on the interaction [23] . For

ll the reasons mentioned above, continuous and real-time gesture

potting (segmentation and recognition) are key factors to bridge

he gap between laboratory research and real world application of

ovel HRI modalities [22] . A major challenge in continuous gesture

ecognition has to do with the fact that there are movement seg-

ents between gestures that have no meaning. Such inter-gesture

ransition periods are transition frames and are known as Move-

ent Epenthesis (ME). Most studies treat ME as a classification

roblem [8] . 

Some gestures, although not all, can be defined by their spatial

rajectory. This is particularly true for pantomimic gestures, which

re often used to demonstrate a certain motion to be done, e.g., a
eduction for recognition of incomplete dynamic gestures, Pattern 
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circle. Burke and Lasenby focused with success on using PCA and

Bayesian filtering to classify these time series [2] . The importance

of DDR PCA to reduce the dimensionality of a dataset representing

human gestures for HRI has been studied in [3,11] . In a different

study, PCA is applied to a continuous stream of time series data

capturing body motions with an accuracy of 91% [14] . A novel ap-

proach called joint sparse principal component analysis (JSPCA) to

jointly select useful features and enhance robustness to outliers is

proposed in [25] . In [12] it is proposed a unified sparse learning

framework by introducing the sparsity or L1-norm learning, which

further extends the locally linear embedding (LLE)-based methods

to sparse cases. Four methods based on L2,1-norm for linear di-

mensionality reduction are proposed in [13] . These methods are

robust to outliers and have more freedom to jointly select the use-

ful features for a low-dimensional representation. Experimental re-

sults on image datasets show that such algorithms obtain compet-

itive performance compared with other DDR methods. A DDR ap-

proach using sparsified singular value decomposition (SSVD) tech-

nique to identify and remove trivial features before applying fea-

ture selection is proposed in [15] . A reference study presents a

sequence kernel dimension reduction approach (S-KDR) in which

spatial, temporal and periodic information is combined in a prin-

cipled manner and an optimal manifold is learned [20] . A novel

support vector number reduction method is in [6] . The support

vector number is reduced by more than 99.5% without accuracy

degradation. 

A recent study indicates that after DDR PCA the classification

accuracy is higher with incomplete gesture data than with com-

plete gesture data [21] . These results were obtained in a relatively

small library of 10 hand/arm dynamic gestures. In [1] it is pre-

sented a gesture recognition solution from scale independent and

partial input data (25%, 50% and 75% of the total gesture length)

with an error rate of 3%. For complete data the accuracy is 100%,

however, these results were obtained from a relatively small li-

brary of 16 classes of simple gestures in an x-y plane. Reasoning

with incomplete data can be associated in some way to the con-

cept of anticipation. For example we may identify a gesture before

it is finished. An important study in the field represents each possi-

ble future using an anticipatory temporal conditional random field

(ATCRF) that models the rich spatial-temporal relations through

object affordances [10] . Human activity prediction has been stud-

ied for task recognition. Tasks can be modelled with a Dynamic

Bayesian Network (DBN) in order to estimate the current task, pre-

dicting the most probable future pairs of action-object and correct-

ing possible misclassification [16] . The combination of data from

different sources greatly influences the ability to predict gesture

and voice patterns [19] . When successful, such prediction ability

allows to increase safety and reliability in HRI process. In addition,

prediction attenuates the negative effect of machine communica-

tion delays and algorithm processing time in the HRI loop. 

Gesture classification has been studied over the years. However,

there remains the problem with reliability and intuitiveness, which

are key factors for a system’s acceptance by end-users. Other chal-

lenges are related with the ability to perform the recognition in

real-time and continuously, recognize gesture patterns with incom-

plete data, and performing DDR keeping or increasing the recogni-

tion accuracy. DDR also allows to reduce training data in super-

vised classification methods and consequently reduce the training

time. The number of existing studies approaching pattern classifi-

cation with incomplete data for prediction/anticipation purposes is

still very limited. 

1.1. Overview and proposed approach 

In a real-world system we usually have a device setup that cap-

tures features of what we are analyzing. In the case of dynamic
Please cite this article as: M. Simão et al., Using data dimensionality r
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estures, time dependencies may also be important. As opposed to

tatic gestures, of which we only need snapshots of the data at cer-

ain instants, dynamic gestures require that data are recorded over

ime, generating a multivariate time series. Oftentimes, the data

re sampled at high rates, quickly generating high dimension data

ets. Gesture patterns contain spatial variation between sequences

nd also temporal variation, which is not necessarily linear. Time

eries recognition is a currently active research topic. 

In this work we introduce an approach to perform the recog-

ition of time series segments, targeted at natural language pro-

essing (NLP) of hand gestures. This approach has the advantage of

llowing accurate classification to be performed with partial (in-

omplete) gesture data Fig. 1 . 

To overcome the problem of classification of time sequences,

.e., DGs, we present two approaches to their feature extraction

nd DDR: one based on up- or down-sampling of gesture frames

sing interpolation, and another based on PCA. The PCA approach

as the advantage of being capable of yielding a good classification

ven before the gesture is finished – with incomplete/partial ges-

ure data. Complex DGs are defined by a large set of features, with

 variable number of frames, and with both trajectory and finger

ovement. The performance of different classifiers is compared in

he process to classify the 95 different signs of the UCI Australian

ign Language (High Quality) Dataset. Independently of the type of

esture and feature extraction approach, the predictor for a certain

ample is represented by the vector z ∈ R 

d : 

 

(i ) = [ f 1 f 2 . . . f d ] (1)

here f i is the i th element of z . 

. Data dimensionality reduction and classification 

.1. Overview 

Lets assume we have a data set S which contains a number

f samples and corresponding labels. A specific sample S(i ) of the

ata set is represented by the matrix X 

( i ) and its label is t ( i ) . A

unction f is then used to extract the feature-vector z from each

ample: 

f : R 

d×n → R 

b 

X → z 
(2)

bove, b is the dimensionality of the feature vector. This transfor-

ation can have several steps and DDR may be one of them. The

ector z is the input for the classifiers and t ∈ { 0 , 1 } n classes is the tar-

et value of the classifier for that sample (supervised learning). If

he target class has the number o , the target vector t ( o ) is defined

y: 

 

(o) 
j 

= δoj , j = 1 , . . . , n classes (3)

here δ is the Kronecker delta and t j is the j th element of t . 

The transformation f may still yield a vector with very high di-

ensionality b , which may be detrimental for the classification.

herefore, intermediate processing techniques, such as PCA and in-

erpolation, are proposed for DDR and are defined as in (4) . Never-

heless, DDR can be done either before or after feature extraction.

r : R 

b → R 

b ′ 

z → z ′ 
, b ′ < b (4)

.2. Resampling with bicubic interpolation 

Resampling is done with bicubic interpolation to transform a

G sample X 

(i ) , i ∈ i D , X ∈ M 

d×n , which has a variable number

f frames n , into a fixed-dimension sample X 

′ , X 

′ ∈ M 

d×k . In this
eduction for recognition of incomplete dynamic gestures, Pattern 
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Fig. 1. Overview of the proposed gesture recognition system. 

Fig. 2. Representation of the result of bicubic interpolation on a 2 × 2 grid of 

points f (0, 0), f (1, 0), f (0, 1), f (1, 1). 

w  

b  

p  

e  

m

 

s  

G  

w  

a  

fi  

×

 

A

 

v  

e  

w

α

x

 

T  

t  

d  

a  

m  

g  

a  

h  

s

2

 

t  

i  

n  

m  

o  

n  

s  

t  

t  

d  

P  

m  

m

 

s  

i  

a

 

t

X

w  

m  
ork, we propose down-sampling the gesture data so that k ≤ n ,

eing k arbitrarily defined as the minimum n in all of the sam-

les i so that i ∈ i D . In this way, the proposed transformation is

ffectively down-sam pling the gesture data, thus reducing the di-

ensionality of the feature vector. 

interp : R 

d×n → R 

d×k 

X → X 

′ (5) 

The bicubic interpolation method [9] yields a surface p de-

cribed by 3rd order polynomials in both dimensions of space.

iven a patch of dimension 2 × 2, there are 4 data points in which

e know the values f and derivatives f x , f y and f xy . The derivatives

re not known at the boundaries, but they can be estimated using

nite differences. The interpolated values inside the uniformized 2

2 sector are given by: 

p(x, y ) = 

3 ∑ 

i =0 

3 ∑ 

j=0 

a i j x 
i y j (6)

 representation of the sector is in Fig. 2 . 

The problem is determining the 16 coefficients a ij . The function

alues and 3 derivatives at the 4 points provide 4 × 4 = 16 lin-

ar equations, which can be written as an equation system A α = x
Please cite this article as: M. Simão et al., Using data dimensionality r
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ith: 

= [ a 00 a 10 a 20 a 30 a 01 . . . a 33 ] 
T (7) 

 = [ f (0 , 0) f (1 , 0) . . . f x (0 , 0) . . . f y (0 , 0) . . . 

f xy (0 , 0) . . . f xy (1 , 1)] T (8)

he matrix A is nonsingular, so the equation system can be rewrit-

en as α = A 

−1 x . This process is used for all patches in the bi-

imensional grid. The derivatives at the boundaries of a patch

re maintained across neighbouring patches. In order to apply the

ethod to the whole data grid efficiently, techniques such as La-

range polynomials, cubic splines or cubic convolution algorithms

re used. The resulting interpolated data points are smother and

ave less artifacts than those using other interpolation methods,

uch as bilinear interpolation. 

.3. Principal component analysis 

PCA is a mathematical tool that performs an orthogonal linear

ransformation of a set of n p -dimensional observations, X ∈ R 

n ×p ,

nto a space defined by the principal components (PC). The PC have

ecessarily a size less than or equal to the number of original di-

ensions, p . The first component has the largest possible variance

bserved in the observations. Each of the following PC is orthogo-

al to the preceding component and has the highest variance pos-

ible under this orthogonality constraint. The PC are the eigenvec-

ors of the covariance matrix and its eigenvalues are a measure of

he variance in each of the PC. Therefore, PCA can be used for re-

ucing the dimensionality of data by projecting that data into the

C space and truncating the lowest-ranked dimensions. These di-

ensions have the lowest eigenvalues, so truncating them retains

ost of the variance present in the data. 

The first step in PCA is centering the data, because PCA is sen-

itive relative to the scaling of the original dimensional space. This

s done by subtracting each of a dimension’s values by its overall

verage. 

The PC transformation is very often determined by another ma-

rix factorization method, the SVD of X : 

 = U�V 

T (9) 

here X ∈ M 

n ×p is the original data matrix. � ∈ M 

n ×p is a diagonal

atrix with the singular values of X, U is a n × n matrix whose
eduction for recognition of incomplete dynamic gestures, Pattern 
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Table 1 

Accuracy on the validation set of the classifiers 

trained only with full gesture data. 

DTW FE1-ANN FE2-ANN 

Accuracy (%) 77 .02 86 .67 85 .72 

Fig. 3. Distribution of features (FE2 with 100% of data) in a reduced principal com- 

ponent space. Only the first 10 classes are represented and colours discriminate the 

classes. 

Fig. 4. ANN architecture used for classification for test cases FE1 and FE2. 
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columns are orthogonal unit vectors that are the left singular vec-

tors of X , and V ∈ M 

p×p is a matrix whose columns are unit vec-

tors, the right singular vectors. Both U and V are orthogonal matri-

ces, so that U 

T U = I p and V 

T V = I p . The singular values σ1 , σ2 , . . .

in the diagonal of � are the positive square roots, σi = 

√ 

λi > 0 , of

the nonzero eigenvalues of the Gram matrix K = X 

T X , thus being

always positive. 

The implementation used for this purpose was Matlab’s pca

function. Since the input data matrix X is most often rectangular,

the function uses the aforementioned SVD method (9) for the ma-

trix decomposition. The singular values, i.e., the variance in each

of the PC, are the eigenvalues of the covariance matrix of X . The

covariance matrix of p sets variates { x 1 } , . . . , { x p } , x i = X •i is de-

fined by W ∈ M 

p×p : 

W i j = cov (x i , x j ) ≡
〈
( x i − μi ) 

(
x j − μ j 

)〉
, i, j = 1 , . . . , p (10)

where μ and 〈 〉 denote mean value, being μi = 〈 x i 〉 . W can also be

written as W i j ≡ 1 / n − 1 XX 

T . The product XX 

T has as eigenvectors

the columns of U . 

Although PCA is most often performed to reduce the dimen-

sionality of the observations, in this work we preferred to use the

PCs as features. The first PC or singular vector U •1 determines

the direction in the PC-space in which there is the most variance

during a DG. The variance is measured by the respective singular

value, �11 . Therefore, we expect these values to produce good fea-

tures for the DG classification, even if the gesture is incomplete.

We also used PCA to represent gesture features in lower two- and

three-dimensional spaces, for easier visualization. 

2.4. Classifiers 

In this study, three distinct classification methods where ap-

plied: dynamic time warping (DTW), support vector machine

(SVM) and artificial neural networks (ANN). These methods are

commonly used for the classification of time series data. The ANN

will be parameterized in different ways to best adapt to the classi-

fication problem in study. 

3. Experimental results 

3.1. UCI Auslan dataset 

The proposed approach was tested with the Australian Sign

Language (Auslan) signs (High Quality) dataset, from the UCI ma-

chine learning repository [7] . Each sample of this set is a multidi-

mensional time series. The whole data set was used, with 95 dis-

tinct classes and 27 examples for each one of the classes. The sam-

ples were obtained from one native Auslan signer over a period of

9 weeks. 

The data acquisition setup consisted of two Fifth Dimen-

sion Technologies (5DT) gloves and two Ascension Flock-of-Birds

magnetic position trackers. Each of the subjects two hands was

equipped with a glove and a tracker. The data gloves measured fin-

ger flexion for each of the 5 fingers and the trackers recorded posi-

tional and orientation of the hands – 6 degrees of freedom (DOF).

These 22 degrees of freedom were measured over time at a rate

of close to 100 frames per second. The average length of each sign

is about 60 frames. Each frame is represented as a 15 dimensional

feature vector consisting of hand position (X,Y,Z), roll, yaw, pitch,

and bend measurements of different fingers. 

In this work, a sample in the data set is represented by S: 

S = 

{
X 

(i ) , t (i ) 
}
, X 

(i ) ∈ R 

d×n , t (i ) ∈ { 1 , . . . , L } (11)

where d is the number of DOF of the system, n is the number of

data frames in the sample, t is the target class number and L is the

number of classes of the set. 
Please cite this article as: M. Simão et al., Using data dimensionality r
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.2. Feature extraction 

Two distinct feature extraction methods are proposed: 

1. Re-sampling the samples with bicubic interpolation (FE1); 

2. Extracting principal vectors and values using PCA (FE2). 

In the first case, FE1, given a sample X 

( i ) : i ∈ i D with n frames

 X 

(i ) ∈ M 

22 ×n ), the goal is to resample it to a fixed size p . The

umber p can be chosen arbitrarily, but in order to reduce the

umber of features, p should be below a lower bound such that

p ≤ n, ∀ n | X 

(i ) ∈ M 

22 ×n . For this data set, this lower bound is 41

nd we chose a p = 20 , which is about half of the minimum orig-

nal gesture length. Applying the bicubic interpolation algorithm

esults in a matrix X 

′ ∈ R 

22 ×p . The following step is to transform

 

′ into a vector z ∈ R 

22 p×1 , which is done by concatenating every

rame vertically: 

 

(i ) = 

⎛ 

⎜ ⎝ 

Z 

(i ) 
•1 
. . . 

Z 

(i ) 
•(28 p) 

⎞ 

⎟ ⎠ 

(12)
eduction for recognition of incomplete dynamic gestures, Pattern 
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Fig. 5. Representation of the evolution of FE2 features over gesture completion rate. 

Each line represents one sample and its colour refers to the target class. 

Table 2 

Classification accuracy on the validation data set for test 

case FE2. 

Accuracy over time (%) 

Classifier 25% 50% 75% 100% Mean 

ANN 93 .06 90 .88 88 .31 81 .92 88 .08 

SVM 83 .79 81 .29 78 .18 73 .89 80 .01 
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Fig. 7. Evolution of the accuracy with percentage of data used. 
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In a second case, FE2, we use PCA to extract features. The ad-

antage is that it allows us to obtain features from incomplete ges-

ures and still obtain coherent features. From each sample X 

(i ) :

 ∈ i D , X ∈ M 

22 ×n we can extract b feature vectors z (i ) 
k 

: k ∈ ]0 , 1] ,

here k defines the fraction of the number of frames that were

sed: 

 

(i ) 
k 

= U •1 (13) 

here U •1 is the first singular vector. The singular vector has the

ame dimensionality as the data source. It is calculated using the

artial sample X 

(i ) 
•m 

, so that: 

ca (X 

(i ) 
•m 

) , m = { 1 , . . . , � nk � } (14)

here n is the number of frames of the sample and � nk � repre-

ents the ceiling function, since � nk � ∈ N . Therefore, � nk � repre-

ents the cutoff frame, that is, the last frame within the sample

hat is used for feature extraction. 

The last feature processing step is feature scaling. Feature scal-

ng is essential for achieving smaller training times and often bet-

er classification performance with less training. It harmonizes the

alues of different features so that all of them fall within the same

ange. This is especially important when some features have dis-

inct orders of magnitude. The scaling function chosen was linear
ig. 6. Plots of the features obtained from the validation data set (including the sets wi

omponent space. The features were centered and scaled. Each color represents a differen

Please cite this article as: M. Simão et al., Using data dimensionality r

Recognition Letters (2017), http://dx.doi.org/10.1016/j.patrec.2017.01.003
escaling, l : 

(x ) = 

2 x − ̂ X 

T 

̂ X 

T 
(15) 

here ̂ is the max + min operator defined in (16) . X 

T =
∪ z (i ) : i ∈ i T 

)
is the set of unscaled features of the training set.

his operator is valid both for static and dynamic gestures but the

ample subsets used should be exclusive. 

 

 i = max X i • + min X i •, i = 1 , . . . , d (16)

.3. Results and discussion 

The available samples S(i ) : i ∈ i D were divided in two sets of

pproximately the same size: a training set ( i ∈ i DT ) and a valida-

ion set ( i ∈ i DV ). Each set has about the same number of samples

er class. In this case, we use all the available samples in the data

et, 27 samples per each of the 95 classes (2565 samples total). All

he accuracy results presented in this study correspond to those

btained from the validation set. 

We present the results for the DTW approach, FE1 and FE2 (full

esture) in Table 1 . The DTW classifier achieved a 77.02% accuracy

ate, while the proposed feature sets FE1 and FE2 achieved signif-

cantly better results (86.67% and 85.72%, respectively) when dis-

riminated with an ANN. A representation of the features for the

rst 10 classes for FE2 is shown in Fig. 3 . In this R 

2 space, the

lasses show good separability, with low intra-class dispersion. 

The ANN architecture is composed by one hidden layer with

00 nodes and 95 output neurons (classes) in both approaches,

ig. 4 . The sole difference between FE1 and FE2 is the size of the

nput feature vector, 440 and 23 for FE1 (12) and FE2 (13) , respec-

ively. In both cases the transfer function is the hyperbolic tangent

n the first layer and the softmax function in the second layer. 

While for the FE1 case the gesture frames are interpolated and

he features are extracted after the gesture is finished, for FE2 the
th incomplete data – 25%, 50%, 75% and 100% of the data) in a reduced principal 

t class. 
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Fig. 8. Visualization of different stages of robot teleoperation process: (a) starting point, (b) virtual joystick guidance to a goal, (c) forceful stop command, (d) rotation of the 

end-effector, (e) gesture-command to open the gripper, (f) grabbing a bottle and puling it up, (g) rotation of the end-effector, (h) saf e collaboration with the robot. NOTE: 

The virtual joystick mode moves the end-effector in a direction defined by the vector that joins a center position in which the hand is closed and the position of the hand 

when it is moved. 
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features can be extracted at any time during a gesture. This allows

for recognition even before the gesture is even finished. If we plot

the evolution of the features of a gesture sample over time, we ob-

tain what is shown in Fig. 5 . Over time, the features still form de-

fined clusters, which are precursors to good classifiers. Given that,

the ANN for FE2 was trained and validated with 25 sets of features

originated from i DT , z (i ) 
k 

: k ∈ { 1/25, 2/25, 3/25 , . . . , 25/25}, see (13) . 

For FE2, the accuracy results are displayed in Table 2 . In this

table we are displaying the accuracy using 25, 50, 75 and 100% of

the gesture data. The best accuracy, reaching 93.06%, was obtained

when only about 25% of the initial gesture data was used. When

more data was used, the accuracy decreased to 81.92%, Fig. 7 . It

is also possible to see the evolution of the FE2 features obtained

from 25, 50, 75 and 100% of the data in Fig. 6 . Even at 25% there is

already good separation of the classes and the clusters are main-

tained over time. There are very few studies concerning the clas-

sification with partial data, so it is difficult to compare our results.

Most of the community assumes that more data should report bet-

ter accuracy. In this study we showed that it is possible to obtain

state of the art accuracy in a real dataset with as little as 25% of

the initial gesture data. Using the same proposed PCA features, the

accuracy decreases over time. This can be justified by the fact that

the initial part of the gesture has better linear correlation between

variables, so the PCA coefficients are more stable. As the number

of frames increases, the gesture becomes more complex and it is

not as easily described by just the first principal vector. 

The UCI Auslan dataset has been applied in a number of stud-

ies related with pattern classification. In a recent study the au-

thors randomly selected four subsets of the whole data set with

each subset containing 20 categories [18] . It is reported that the

best classification results were obtained with the proposed order

preserving sparse coding method (MTO-SC), with an accuracy of

about 94% in the classification of subsets with 20 categories. In

[4] it is reported an accuracy of about 94% using SVM and logistic

regression models. A Dual Square-Root Function (DSRF) descriptor

obtained by calculating gradient-based shape features of normal-

ized rigid body motion trajectories was applied with an accuracy

of 88%, [5] . 

3.4. Interacting with a real robot 

The proposed classification system was tested in a real robot.

For the HRI process, the robot is controlled using gestures in a col-

laborative task: preparing a breakfast meal. This is a combination

of single robot tasks such as pick, place, hold, and carry actions. In

such task the robot grabs a cereal box (pouring the contents into a
Please cite this article as: M. Simão et al., Using data dimensionality r

Recognition Letters (2017), http://dx.doi.org/10.1016/j.patrec.2017.01.003
owl) and grabs a yogurt bottle (also pouring its contents into the

ame bowl), Fig. 8 . Our setup is composed by a robot with 6 DOF, a

ata glove and a magnetic tracker. From the 95 gestures in the UCI

uslan dataset we are only using/recognizing 10 gestures from one

and/arm. The classified gestures are used as input to teleoperate

he robot, i.e., they are directly associated to the robot commands:

top motion, move along X, Y or Z in Cartesian space, rotate the

obot end-effector in turn of X, Y or Z, and open/close the grip-

er. In practice, the human âguidesâ the robot to close the target

bjects using specific gestures, and then open or close the gripper

sing other gestures. A specific gesture is associated to robot STOP

ommand, i.e., the human can stop the robot at any instant. This

eleoperation mode allows to use the robot as a tool, in which the

uman can save robot target points so that the robot can replicate

he task if objects are in same poses or if the robot has perception

bilities to adjust to new positions of objects. 

. Conclusions 

This paper demonstrated that dynamic gesture data can be sub-

ect to DDR making the classification process more efficient: in-

rease accuracy, reduce training time and classify gesture patterns

ith incomplete data. We concluded that the classification accu-

acy is higher with 25% of initial gesture data (93% accuracy) than

ith 50% (91% accuracy), 75% (88% accuracy) or 100% (83% accu-

acy) of gesture data. These results, obtained from the classification

f 95 different patterns, can be explained by the noise we have in

lassifiers input data. Recognized gestures proved to be a natural

nd intuitive human-robot interface. 

Future work will be dedicated to explore the ability to classify

esture patterns with initial 25% in the context of anticipation ac-

ivities in the process of human-robot interaction. In addition, this

pproach will be tested with other type of input data (obtained

rom other sensing technology). 
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