
Industrial Robot: An International Journal
Emerald Article: High-level robot programming based on CAD: dealing with
unpredictable environments
Pedro Neto, Nuno Mendes, Ricardo Araújo, J. Norberto Pires, A. Paulo
Moreira

Article information:

To cite this document: Pedro Neto, Nuno Mendes, Ricardo Araújo, J. Norberto Pires, A. Paulo Moreira, (2012),"High-level robot
programming based on CAD: dealing with unpredictable environments", Industrial Robot: An International Journal, Vol. 39 Iss: 3
pp. 294 - 303

Permanent link to this document:
http://dx.doi.org/10.1108/01439911211217125

Downloaded on: 24-04-2012

References: This document contains references to 23 other documents

To copy this document: permissions@emeraldinsight.com

Access to this document was granted through an Emerald subscription provided by Emerald Author Access

For Authors:
If you would like to write for this, or any other Emerald publication, then please use our Emerald for Authors service.
Information about how to choose which publication to write for and submission guidelines are available for all. Additional help
for authors is available for Emerald subscribers. Please visit www.emeraldinsight.com/authors for more information.

About Emerald www.emeraldinsight.com
With over forty years' experience, Emerald Group Publishing is a leading independent publisher of global research with impact in
business, society, public policy and education. In total, Emerald publishes over 275 journals and more than 130 book series, as
well as an extensive range of online products and services. Emerald is both COUNTER 3 and TRANSFER compliant. The organization is
a partner of the Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for digital archive
preservation.

*Related content and download information correct at time of download.

Research article

High-level robot programming based on CAD:
dealing with unpredictable environments

Pedro Neto, Nuno Mendes, Ricardo Araújo and J. Norberto Pires

Department of Mechanical Engineering (CEMUC), University of Coimbra, Coimbra, Portugal, and

A. Paulo Moreira
Institute for Systems and Computer Engineering of Porto (INESC-Porto), Porto, Portugal

Abstract
Purpose – The purpose of this paper is to present a CAD-based human-robot interface that allows non-expert users to teach a robot in a manner
similar to that used by human beings to teach each other.
Design/methodology/approach – Intuitive robot programming is achieved by using CAD drawings to generate robot programs off-line. Sensory
feedback allows minimization of the effects of uncertainty, providing information to adjust the robot paths during robot operation.
Findings – It was found that it is possible to generate a robot program from a common CAD drawing and run it without any major concerns about
calibration or CAD model accuracy.
Research limitations/implications – A limitation of the proposed system has to do with the fact that it was designed to be used for particular
technological applications.
Practical implications – Since most manufacturing companies have CAD packages in their facilities today, CAD-based robot programming may be a
good option to program robots without the need for skilled robot programmers.
Originality/value – The paper proposes a new CAD-based robot programming system. Robot programs are directly generated from a CAD drawing
“running” on a commonly available 3D CAD package (Autodesk Inventor) and not from a commercial, computer aided robotics (CAR) software, making
it a simple CAD integrated solution. This is a low-cost and low-setup time system where no advanced robot programming skills are required to operate
it. In summary, robot programs are generated with a high-level of abstraction from the robot language.

Keywords Robots, Programming, Computer aided design, Industrial robotics, High-level programming, Sensory feedback,
Unpredictable environments

Paper type Research paper

1. Introduction

1.1 Motivation

Increasingly, companies are changing and reinventing their

production systems. Traditional manufacturing systems (often

based on fixed automation and manual work) are being replaced

by flexible and intelligent manufacturing systems, enabling

companies to continue to be competitive in the global market

(Kopacek, 1999). This competitiveness is reflected in the

companies’ capacity to respond/react quickly to market

demands, producing more and better quality products at

competitive prices.
Owing to its flexibility, programmability and efficiency,

industrial robots are seen as a fundamental element of

modern flexible manufacturing systems. Nevertheless, there

are still some problems that hinder the utilization of robots in

industry, especially in small and medium-sized enterprises

(SMEs). SMEs have difficulty finding skilled workers capable

of operating with robots. Therefore, new and more intuitive

ways for people to interact with robots are required to

make robot programming more accessible, easier and faster.

The goal is that the instructor can teach a robot in a manner

similar to that used by humans to teach each other, for

example using CAD drawings, gestures or through verbal

explanation (Neto et al., 2009, 2010b).

1.2 Objectives and contribution

Robot programming through the typical teaching method

(using the teach pendant) is a tedious and time-consuming

task that requires technical expertise. The goal is to develop

methodologies that help users to program a robot in an

intuitive way, quickly, with a high-level of abstraction from the

robot specific language, and, if possible, without speeding too

much money.

The current issue and full text archive of this journal is available at

www.emeraldinsight.com/0143-991X.htm

Industrial Robot: An International Journal

39/3 (2012) 294–303

q Emerald Group Publishing Limited [ISSN 0143-991X]

[DOI 10.1108/01439911211217125]

This work was supported in part by the Portuguese Foundation for
Science and Technology (FCT) (SFRH/BD/39218/2007).

294

In this paper, a new CAD-based system to program a robot

from a 3D CAD drawing, allowing users with basic skills in
CAD and robot programming to generate robot programs off-
line, is presented. In addition, the 3D CAD package

(Autodesk Inventor) that interfaces with the user is a well-
known generic CAD package, widespread on the market at a
relative low-cost. Starting from the CAD model of the robotic
cell in study, the way the user generates a robot program is as

simple as “drawing” the desired robot paths in the CAD
environment. Later, the information needed is automatically
extracted from the CAD environment, analyzed and

converted into robot programs. Note that the robot
programs are not extracted neither from a computer aided
manufacturing (CAM) software nor from a computer aided

robotics (CAR) software or from a virtual reality modelling
language VRML-based platform. On contrary, robot
programs are directly generated from Autodesk Inventor. It
means that we are proposing a simple CAD integrated

solution for the robotics field. With the advent of
sophisticated and sometimes expensive CAR softwares,
research in CAD-based robot programming (from raw CAD

data) has been neglected. Today, considering the capabilities
of modern CAD packages, new research opportunities in the
robotics field can be identified.

Commercial CAR packages are powerful tools, which
enable modelling, simulation and robot programming.
Nevertheless, they have some disadvantages that hinder

their use in companies, especially in SMEs. By comparing
commercial CAR packages with a CAD-based robot
programming system similar to that presented in this paper
(Neto et al., 2010a), it was found that the CAD-based system

has some relative advantages:
. low-cost – since the construction of CAD models and the

robot programming task are performed in the same
environment/platform (Autodesk Inventor) the
programming task becomes easier and cheaper;

. short learning curve; and

. simplicity of use – the most time-consuming task, the

construction of the CAD model, is present in both
systems.

Notwithstanding the above, CAD-based robot programming

approaches work well if the environment of the robot tasks is
well defined. However, there are situations which are likely to
create errors or impede the normal operation of the robot:
. the CAD models do not reproduce correctly the geometry

of the real scenario;
. inaccuracies created in the robot calibration process;
. inefficient fixtures that do not ensure the static character

of the workpieces; and
. a “foreign” object is introduced in the real environment.

In these cases, we can say that we are in the presence of a

dynamic and unpredictable environment.
To perform successful manipulation robots depend on

precise information about objects in their surrounding. In an

unpredictable environment, such information cannot be given
to the robot a priori, robots have to autonomously and
continuously acquire information about their surrounding

environment to support their decision making and react to
unanticipated events. Sensory feedback allows a robot to
recognize your work environment for itself, for example

producing corrections (on-line) in pre-programmed robot
paths (Figure 1). In fact, the integration of sensors into

robotic platforms reduces the setup time, the need for
accurate robot trajectory programming and promotes

flexibility and the autonomous behaviour of robotic systems

(Bolmsjö and Olsson, 2005; Johansson et al., 2004).
In line with the above mentioned, we are proposing an

approach involving the use of real-time sensory feedback to

assist robots when they are off-line programmed from CAD.

The proposed platform is validated with two different real-

world experiments for two different tasks, seam tracking

(using a laser camera) and for applications that require the

robot to follow a geometric profile while maintaining a contact

force (using a force/torque (F/T) sensor). Details in the way

the laser camera and F/T sensor interact with the robot are
beyond the scope of this study. In fact, sensory feedback is

used to validate the CAD-based robot programming system

when confronted with uncertain.

2. Related work

In recent years, CAD technology has become economically

attractive and easy to work with so that today millions of SMEs
worldwide are using it to design and model their products.

Already in the 1980s, CAD was seen as a technology that could

help in the development of robotics (Bhanu, 1987). Since then,

a variety of research has been conducted in the field of CAD-

based robot planning and programming.
A review of CAD-based robot path planning for spray

painting is presented by Chen et al. (2009). Another study

presents a method to generate 3D robot working paths for a

robotic adhesive spray system for shoe outsoles and uppers

(Kim, 2004). Nagata et al. (2007) proposes a robotic sanding

platform where the robot paths are generated by CAD/CAM

software. A recent study discusses robot path generation from

a CAM software for rapid prototyping applications (Cerit and
Lazoglu, 2011). An example of a novel process that benefits

from the robots and CAD versatility is the so-called

incremental forming process of metal sheets (Schaefer and

Schraft, 2005). Feng-yun and Tian-sheng (2005) presents a

robot path generator for the polishing process, where the

cutter location data is generated from the postprocessor of a

CAD system. As we have seen above, a variety of research has
been done in the area of CAD, CAM and VRML based robot

planning and programming. However, none of the studies so

far deals with an effective solution for intuitive and low-cost

robot programming using raw CAD data.
Unpredictable environments pose a significant challenge

because of their complexity and inherent uncertainty. Over the

last few years, important studies have been carried out to deal

with uncertainty in the robotics field: using models of “ideal”

environments, sensory feedback, and implementing reasoning

methods into robotic platforms (Bruyninckx et al., 1991;

Figure 1 (a) Planned path for a specific environment; (b) a “foreign”
object is introduced into the environment and collision occurs; (c)
sensory feedback is introduced, helping the robot to deal with the
unpredictable environment (robot path is adjusted)

High-level robot programming based on CAD

Pedro Neto et al.

Industrial Robot: An International Journal

Volume 39 · Number 3 · 2012 · 294–303

295

Nayak and Ray, 1990). These concepts have evolved and
recently, researchers have been successful in developing skills
that can handle the complexity of dynamic and predictable
environments (Kenney et al., 2009; Mendes et al., 2010).
A number of authors have devoted attention to sensor
simulation, trying to mimic as closely as possible the
behaviour of a real sensor, and thus integrating it (the virtual
sensor) within a CAR platform (Cederberg et al., 2002;
Brink et al., 1997; Bolmsjö and Olsson, 2005). Moreover,
sensor information has been used to update robotic cell models
in real-time, allowing to avoid problems such as collisions,
kinematic singularities and exceeding of joint limits (Brink et al.,
1997; Johansson et al., 2004).

The concept of seam tracking applied to robotic welding
has been studied over the last two decades (Nayak and Ray,
1990). Recently, important work has been carried out in the
integration of sensors to assist the robotic arc welding process
(Fridenfalk and Bolmsjö, 2002; Bolmsjö and Olsson, 2005).

3. Robot programming from CAD

Starting from a 3D CAD model of the robotic cell in study,
the way the user generates a robot program can be as simple
as “drawing” the desired robot paths in the CAD
environment. Furthermore, to define the robot end-effector
pose (position and orientation), it is necessary to know, not
only the robot path positions but also the end-effector
orientations in space. Therefore, after drawing the robot
paths, simplified tool models should be placed along the
paths. These models will define the orientation of the robot
end-effector in each segment of the path (Figure 2).

The information needed to program the robot will be
extracted from the CAD environment by using an application
programming interface (API) provided by Autodesk. This
API allows the extraction of the points that characterize each
of the different lines used to define a robot path; straight lines,
splines and arcs. Moreover, the API also gives information
about the transformation matrix of each part model
represented in the CAD environment. The transformation
matrix contains the rotation matrix and the position of the
origin of the part model to which it refers, both in relation to
the origin of the CAD assembly model. Later, the information
extracted from the CAD is converted into robot programs
(Video 1, 2010). A diagram with the procedure to extract 3D
data from CAD and their conversion into a robot program is
shown in Figure 3.

3.1 Application programming interface

The Autodesk Inventor API shows the Inventor’s
functionalities in an object-oriented manner, allowing
developers to interact with Autodesk Inventor using current

programming languages; Visual Basic, Visual C#, Visual

Cþþ . In our proposed system, a standalone application was

used to extract information from the CAD and the Autodesk

Apprentice Server was used to display the CAD models on

the screen, Figure 4. A flow chart, containing the method to

automatically extract information about a straight line drawn

in CAD, is shown in Figure 5.

3.2 Position and orientation in space

In order to off-line generate a robot program from a CAD

environment and put it running in a real environment, the CAD

model of the cell should match with the real one. In other words,

it is necessary to have all robot end-effector positions and

orientations with respect to one or more reference frames

known a priori by the robot. These frames are made known to

the robot through a calibration process. Generally, this is a

simple and non-time-consuming process where the user needs

to define the frame(s) within the CAD environment and then to

Figure 2 Simplified tool models defining the end-effector orientation

Figure 3 Extracting 3D data from CAD

Figure 4 Accessing the autodesk inventor’s API

High-level robot programming based on CAD

Pedro Neto et al.

Industrial Robot: An International Journal

Volume 39 · Number 3 · 2012 · 294–303

296

teach the real robot about that frame(s)’ pose in the real scenario

(off-line to on-line mapping). When there are a significant

number of frames to define, the calibration process can be

lengthy and prone to error.
The API provides all the information (transformation

matrices and path lines data) with respect to the origin of the

CAD assembly model, the universe coordinate system {U}.

Considering that a frame {B} is defined relative to {U} during

the calibration process, from the API we have the

transformation matrix of {B} relative to {U}, U
B T. This means

that frame {B} “makes the link” between the virtual and real

world. Note that, as mentioned above, it is possible to define

more than one frame if necessary, as the process is similar.
Since Autodesk Inventor considers the robot path lines

drawn as a constituent of a single CAD part model (.ipt file)

contained in the CAD assembly model (.iam file), the

transformation matrix (relative to {U}) of that single part

model defines the pose of the path lines. For the general case

shown in Figure 6, the path line is part of the table top model

in which the origin and orientation is defined by frame {E}.

However, it is not necessary to know the orientation of the

path lines as the API provides all the necessary points to

define the path lines relative to {U}, for example the initial

path point UPini (Figure 6). So it is necessary to achieve the

path line points relative to frame {B}. In terms of establishing

the robot end-effector orientation, frames {C} and {D} help

to define the origin and orientation of simplified tool models

in Figure 6. As mentioned, the API provides the

transformation matrix of these models relative to {U},
U
CT and U

DT. However, for robot programming purposes we

wish to express frame {C} and {D} in terms of frame {B}, B
CT

and B
DT. For the case of B

CT we have:

B
CT ¼ B

UT £ U
CT ð1Þ

To find B
UT, we must compute the rotation matrix that

defines frame {U} relative to {B}, B
UR, and the vector that

locates the origin of frame {U} relative to {B}, BPUorg. So, we

know that:

B
UT ¼

B
UR

0 0 0

BPUorg

1

�����
2
4

3
5 ð2Þ

Given the characteristics of a rotation matrix, B
UR ¼ U

B RT, and

as we know U
B T, the next step is to calculate BPUorg.

Considering a generic vector/point defined in {U}, UP; if we

wish to express this point in space in terms of frame {B} we

must compute:

BP ¼ B
UR £U P þB PUorg ð3Þ

Rewriting equation (3) by replacing P with UPBorg:

B UPBorg

� �
¼ B

UR £U PBorg þB PUorg ð4Þ

The left side of equation (4) must be zero, so, from equation (4)

we have:

BPUorg ¼ 2B
UR £U PBorg ¼ 2U

BR
T £U PBorg ð5Þ

From equations (2) and (5) we can write:

B
UT ¼

U
BR

T

0 0 0

2U
B R

T £U PBorg

1

�����
2
4

3
5 ð6Þ

Now, we can rewrite equation (1) and achieve B
CT. The same

methodology can be used to achieve B
DT and any other

transformation.

3.3 Position and orientation interpolation

When an industrial robot is performing a pre-programmed

movement and this one requires abrupt end-effector

orientation changes, we must take special care because it

can come into a situation where no one has total control over

the end-effector orientation. This is particularly true when

robot programs are generated off-line. The proposed solution

to circumvent this problem is based on the implementation of

linear smooth interpolation of end-effector positions and

Figure 6 System framesFigure 5 Extracting data from CAD (straight line)

High-level robot programming based on CAD

Pedro Neto et al.

Industrial Robot: An International Journal

Volume 39 · Number 3 · 2012 · 294–303

297

orientations (Feng-yun and Tian-sheng, 2005). The process

involves the following steps:
1 Identification of risk areas (paths). This is done by

analyzing the CAD model and manually defining those
areas in the drawing.

2 Discretization of the risk path in equally spaced intervals.
3 Calculation of end-effector orientations for each

interpolated path point. The new path is smoother than

the initial (Figure 7).

Consider rðkÞ ¼ rxðkÞ ryðkÞ rzðkÞ
h iT

a generic end-effector

position generated at the discrete time k and defined in

Pj Pjþ2

h i
, (Figure 7). Pj, Pjþ1 and Pjþ2 are known end-

effector poses, extracted from the CAD drawing (see Section
4.1.2). For the profile in Figure 7 (possible area of risk) we

will separate the interpolation in two sections, S1 and S2;

S1 [Pj Pjþ1

h i
and S2 [Pjþ1 Pjþ2

h i
. The calculations

are presented for section S1 but for other sections the

procedure is the same. So, r(k) is calculated using both the

known data points from CAD (Pj, Pjþ1) and the profiling

velocity v(k):

vðkÞ ¼ vxðkÞ vyðkÞ vzðkÞ
h iT

ð7Þ

It is assumed that the magnitude of v(k), jv(k)j, is a constant.

Considering rðkÞ [Pj Pjþ1

h i
, a direction vector W can be

defined as:

W ¼ Pjþ1 2 Pj ð8Þ

From equations (7) and (8), each directional velocity profile is

obtained by:

viðkÞ ¼ jvðkÞj £ Wi

jW j ; ði ¼ x; y; zÞ ð9Þ

From equation (9), using a sampling width Dt, the

interpolated position r(k) is given by:

rð0Þ ¼ PT
j ¼ Pj; x Pj; y Pj; z

h i
ð10Þ

rðnÞ ¼ PT
jþ1 ¼ Pjþ1; x Pjþ1; y Pjþ1; z

h i
ð11Þ

riðkÞ ¼ rið0Þ þ viðkÞ £ k £ Dt;
ði ¼ x; y; zÞ
ðk ¼ 1; :::; n2 1Þ

(
ð12Þ

Note that n represents the number of interpolated points.
A quaternion interpolation algorithm (spherical linear

interpolation – Slerp) to interpolate smoothly a sequence of
end-effector orientations was used. For the profile in Figure 7

we will interpolate end-effector orientations between

Pj and Pjþ2. Given two known unit quaternions, Q0

(from Pj) and Qn (from Pjþ2), with parameter k moving

from 1 to n 2 1, the interpolated end-effector orientation Qk

can be obtained as follows:

Qk ¼
sinð1 2 ððk2 1Þ=ðn2 1ÞÞ £ uÞ

sin u
£Q0

þ sinðððk2 1Þ=ðn2 1ÞÞ £ uÞ
sin u

£Qn; k [1 n2 1
� �ð13Þ

where:

u ¼ cos21ðQ0 £QnÞ ð14Þ

3.4 Robot program generation

Using the information extracted from the CAD environment,

the system presented here is able to generate robot programs

for specific robotic applications. The code generation process

is divided into two distinct phases:
1 Definition and parameterization of robot positions/

orientations, reference frames, tools, etc. The

end-effector positions and orientations extracted from

CAD are used to define the robot path target poses

(equation (15)). When confronted with risk areas the

interpolation algorithms automatically generate the

appropriate end-effector poses for these areas. From

equation (3) we have the end-effector positions BP; from

equation (1) the transformation matrix B
CT
� �

containing

the rotation matrix, which in turn is used to calculate the

end-effector orientation in the form of quaternions or

Euler angles; from equation (13) the interpolated

positions r(k); and finally from equation (14) the

interpolated orientations (quaternions) Qk:

P ¼
BP and riðkÞ

x; y; z|fflffl{zfflffl};
B
C
T and Qk

q1; q2; q3; q4|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl} ð15Þ

Body of the program. A robot program contains

predominantly robot motion instructions (linear, joint,

circular or spline robot movement). These movement

instructions are selected according to the type of lines used

in the CAD drawing to define the robot paths.

4. Experiments

Two different experiments are discussed, and in both cases,

robot programs are generated off-line from a CAD drawing.

In the first experiment, seam tracking, robot paths are

adjusted with the information received from a laser camera

attached to the robot. In the second experiment, a robot

follows a geometric profile while maintaining a contact force,

robot paths are adjusted with the information received from a

F/T sensor attached to the robot wrist.
To better visualize the robot path adjustments provided by

sensory feedback, the robotic space was forced to become a

more “viewable” unpredictable environment by purposely

making a rough calibration process. Often, calibration errors

arise from the little time and attention devoted to the robot

calibration process. Errors also arise from the geometrical and

dimensional differences between the CAD model and the real

scenario, and from the tolerance of the fixtures.

Figure 7 (a) End-effector pose before interpolation and (b) end-effector
pose after interpolation

High-level robot programming based on CAD

Pedro Neto et al.

Industrial Robot: An International Journal

Volume 39 · Number 3 · 2012 · 294–303

298

4.1 Seam tracking
4.1.1 Experimental setup
The experimental setup of the robotic platform (Figure 8) is
the following:
. an industrial robot ABB IRB 2400 equipped with a

S4C þ /M2000 controller;
. a computer running Microsoft Windows Xp; and
. a laser camera DIGI-I/S from Servo Robot.

The computer is running a CAD package (Autodesk
Inventor) and the developed software interface, which

receives data from CAD, interprets the data received and
generates robot programs. The robot is remotely controlled
and managed by the software interface, which uses an
ActiveX named PcRob for such purposes. The laser camera is
connected with the robot controller via serial port.

4.1.2 CAD model
The CAD assembly model from which a robot program will

be generated does not need to accurately represent the real
cell in all its aspects (Figure 9). On the contrary, it can be a
simplified model containing the “important” information. As
an example, the robot tool length, robot paths and relative
positioning of CAD models should represent the real

scenario, however, the models appearance do not need to be
exactly equal to the real objects. It means that, for example, in
the construction of a CAD model, chamfers or rounded edges
are expendable. This speeds up the modelling process. The
scale of the CAD models is 1:1.

For this particular experiment, the CAD assembly model
should contain the workpieces to be welded, the robot paths
and the robot tools with the desired torch orientation for each
path segment. In terms of risk areas, there is only one abrupt
tool orientation change (Figure 9).

4.1.3 Path adjustment
Analyzing the incoming data from the laser camera, the
implemented control system decides which end-effector
adjustments should be applied to the main paths extracted
from CAD. The system modus operandi is relatively simple:
. Definition/calibration of the robot tool to match with the

robot reference frame.
. The laser camera is configured with information about the

welding joint and the desired vertical and/or horizontal

distances (tool standoff) that the torch must maintain to
the welding joint.

. Features from the workpiece profile are extracted and
matched against the predefined joint templates and
tolerances.

. The automatic end-effector adjustment is achieved by a
closed loop position control that promotes compensation
of the errors in y- and z-directions. Correction data are
acquired with a sample rate of 5 Hz.

4.1.4 Results and discussion
Results showed that the CAD-based robot programming
system is easy to use and within minutes an untrained user
can generate a robot program for welding purposes. However,
in the real scenario (Figure 10) we have a dynamic
environment where robot path adjustments are required.
Figure 11 shows the robot path adjustments/corrections
(in the y-direction) made by the robot during the seam
tracking process (Video 2, 2010).

As the robot only allows path adjustments at a frequency of
5 Hz, for higher welding speeds the path correction does not
appear so smooth. Another limitation is the low robot
resolution (0.01 mm), making the path adjustment process
more abrupt.

4.2 Profile following
4.2.1 Experimental setup and features
The experimental setup of the robotic platform (Figure 12) is
the following:
. an industrial robot Motoman HP6 equipped with the

NX100 controller;
. a computer running Microsoft Windows Xp;
. a six degrees of freedom F/T sensor from JR3; and
. a local area network, Ethernet and TCP/IP based, used for

robot-computer communication (100 Mbps).

The computer is running Autodesk Inventor and the
developed software interface. This interface generates robot
programs from CAD and manages the force control system,
acquiring data from the F/T sensor and sending motion
commands (adjustments) to the robot. The software interface
communicates with the robot using a software component
named MotomanLib. The ActiveX component JR3PCI is
used to acquire force and torque data from the F/T sensor.
The robot pose is adjusted with a sample rate of 20 Hz.

As in the previous experiment, the robot program is
generated from a CAD drawing (Figure 13). The real work
environment is an unpredictable environment due to the

Figure 8 System architecture

High-level robot programming based on CAD

Pedro Neto et al.

Industrial Robot: An International Journal

Volume 39 · Number 3 · 2012 · 294–303

299

“uncertainty” that comes from an inaccurate calibration

process and due to the surface roughness of the workpiece.

The robot tool should follow a geometric profile while

maintaining a contact force. In order to facilitate the analysis

of experimental results, a ball-shaped tool was mounted on

the robot’s end-effector.

4.2.2 Results and discussion
Regarding the generation of the robot program from a CAD

drawing, this experiment showed similar results to those of

Section 4.1.4. From the incoming data from the F/T sensor,

the implemented force and robot displacement control system

(Fuzzy-PI and PI reasoning) decides which displacements

should be applied to the robot end-effector to achieve

satisfactory performance (Mendes et al., 2010; Video 3,

2010). The force control system ensures that the contact

forces are maintained at a constant value, adjusting the pre-

programmed robot paths extracted from CAD (Figures 14

and 15). The graphs of Figure 14 show some force fluctuation

due to the roughness of the surface and the noise of F/T data.

4.3 Overall results

Some problems can occur when external sensors are used to

on-line adjust robot motion and in fact, these problems can be

listed:

. collisions between the external sensor and the surrounding

workspace;
. situations in which the robot arm is sent to a location

outside of the robot working area;
. kinematic singularities;
. poor choice of process parameters; and
. the communications delay between the external sensor

and the robot controller can produce a negative effect on
the proper definition of the robotic task.

In order to avoid the above mentioned problems the operator
should ensure that the workpieces are inside the working area

of the robot, no collisions occur and kinematic singularities

are identified.
During effective robot operation, if a failure or

malfunctioning is detected, two different situations can be

considered: task abortion or activation of a reactive task. After
aborting the process, the restarting of the system can be a

complicated issue, depending on the type of robotic task. For

example, for an arc welding application, restarting the system
requires at least placing the torch at the point where the robot

stopped.

5. Conclusion and future work

A new CAD-based robot programming system was presented.

Experiments showed that the proposed platform opens new
possibilities for intuitive robot programming. It means that an

untrained operator can generate a robot program for a specific

task within minutes. Moreover, since the construction of the
CAD models and robot programming task are performed in

the same platform (Autodesk Inventor) the entire robot

programming process becomes easier and cheaper. This is
very important for SMEs that produce small batches of

products and need to constantly reprogram the robotic cells.

In addition, sensory feedback enables the robot to be more
flexible when confronted with product changeover. By adding

sensory feedback to the robotic platforms we ensure that the

robot manoeuvres in an unpredictable environment, damping
possible impacts and increasing the tolerance to positioning

errors from the calibration process or from the construction of

the CAD models.
Further research and development will be needed to make

the proposed platform more “generalist”. It means that the

methods to generate robot programs must evolve to other
applications. The CAD-based module should be able to

simulate robot motion and detect collisions. In fact, today,

Figure 9 CAD assembly model of the workpieces to be welded (butt
joint)

Note: A robot program will be generated from this
model

Figure 10 Robotic cell

High-level robot programming based on CAD

Pedro Neto et al.

Industrial Robot: An International Journal

Volume 39 · Number 3 · 2012 · 294–303

300

Figure 12 System architecture

Figure 13 CAD assembly model of the working profile

Figure 11 Path adjustments in y-direction

Note: Robot velocity 10 mm/s

High-level robot programming based on CAD

Pedro Neto et al.

Industrial Robot: An International Journal

Volume 39 · Number 3 · 2012 · 294–303

301

the Autodesk Inventor API provides tools that allow us to face
this direction of research with optimism. Moreover, future
work will be required to proceed with the development of

methodologies which would facilitate sensor integration in
robotic platforms, especially for when robots are programmed

off-line.

References

Bhanu, B. (1987), “CAD-based robot vision”, IEEE
Computer, Vol. 20 No. 8, pp. 12-16.

Bolmsjö, G. and Olsson, M. (2005), “Sensors in robotic arc
welding to support small series production”, Industrial
Robot, Vol. 32 No. 4, pp. 341-5.

Brink, K., Olsson, M. and Bolmsjö, G. (1997), “Increased
autonomy in industrial robotic systems: a framework”,

Journal of Intelligent and Robotic Systems, Vol. 19, pp. 357-73.
Bruyninckx, H., De Schutter, J. and Allotta, B. (1991),

“Model-based constrained motion: a. modelling,
specification and control”, IEEE 5th International
Conference on Advanced Robotics, Pisa, pp. 976-81.

Cederberg, P., Olsson, M. and Bolmsjö, G. (2002), “Virtual
triangulation sensor development, behavior simulation and

CAR integration applied to robotic arc-welding”, Journal of
Intelligent and Robotic Systems, Vol. 35, pp. 365-79.

Cerit, E. and Lazoglu, I. (2011), “A CAM-based path
generation method for rapid prototyping applications”, The
International Journal of Advanced Manufacturing Technology,
Vol. 56, pp. 319-27, on-line available.

Chen, H., Fuhlbrigge, T. and Li, X. (2009), “A review of
CAD-based robot path planning for spray painting”,

Industrial Robot, Vol. 36 No. 1, pp. 45-50.
Feng-yun, L. and Tian-sheng, L. (2005), “Development of a

robot system for complex surfaces polishing based on CL

data”, The International Journal of Advanced Manufacturing
Technology, Vol. 26, pp. 1132-7.

Fridenfalk, M. and Bolmsjö, G. (2002), “Design and
validation of a sensor guided robot control system for

welding in shipbuilding”, International Journal for the Joining
of Materials, Vol. 14 Nos 3/4, pp. 44-55.

Johansson, R., Robertsson, A., Nilsson, K., Brogardh, T.,

Cederberg, P., Olsson, M., Olsson, T. and Bolmsjö, G.
(2004), “Sensor integration in task-level programming and

industrial robotic task execution control”, Industrial Robot,
Vol. 31 No. 3, pp. 284-96.

Kenney, J., Buckley, T. and Brock, O. (2009), “Interactive
segmentation for manipulation in unstructured

environments”, IEEE International Conference on Robotics
and Automation, Kobe, Japan, pp. 1337-82.

Kim, J.Y. (2004), “CAD-based automated robot

programming in adhesive spray systems for shoe outsoles
and uppers”, Journal of Robotic Systems, Vol. 21 No. 11,

pp. 625-34.
Kopacek, P. (1999), “Intelligent manufacturing: present state

and future trends”, Journal of Intelligent and Robotic Systems,
Vol. 26, pp. 217-29.

Mendes, N., Neto, P., Pires, J.N. and Moreira, A.P. (2010),
“Fuzzy-PI force control for industrial robotics”, in

Vadakkepat, P, Kim, J.-H., Jesse, N., Mamun, A.A.,

Kiong, T.K., Baltes, J., Anderson, J., Verner, I. and
Ahlgren, D. (Eds), Trends in Intelligent Robotics, Springer,

Berlin, pp. 322-9.
Nagata, F., Kusumoto, Y., Fujimoto, Y. and Watanabe, K.

(2007), “Robotic sanding system for new designed
furniture with free-formed surface”, Robotics & Computer-
Integrated Manufacturing, Vol. 23 No. 4, pp. 371-9.

Figure 15 Robot tool in contact with the real workpiece

Figure 14 Experimental results by using a Fuzzy-PI controller (at left) and PI controller (at right)

High-level robot programming based on CAD

Pedro Neto et al.

Industrial Robot: An International Journal

Volume 39 · Number 3 · 2012 · 294–303

302

Nayak, N. and Ray, A. (1990), “An integrated system for
intelligent seam tracking in robotic welding: part I –
conceptual and analytical development”, IEEE International
Conference on Robotics and Automation, pp. 1892-7.

Neto, P., Pires, J.N. and Moreira, A.P. (2009),
“Accelerometer-based control of an industrial robotic
arm”, 18th IEEE International Symposium on Robot and
Human Interactive Communication, Toyama, pp. 1192-7.

Neto, P., Pires, J.N. and Moreira, A.P. (2010a), “CAD-based
off-line robot programming”, IEEE International Conference
on Robotics, Automation and Mechatronics, Singapore,
pp. 516-21.

Neto, P., Pires, J.N. and Moreira, A.P. (2010b), “High-level
programming and control for industrial robotics: using a
hand-held accelerometer-based input device for gesture and
posture recognition”, Industrial Robot, Vol. 37 No. 2,
pp. 137-47.

Schaefer, T. and Schraft, D. (2005), “Incremental sheet metal

forming by industrial robot”, Rapid Prototyping Journal,

Vol. 11 No. 5, pp. 278-86.
Video 1 (2010), “Robot program generation from CAD

virtual paths”, available at: http://robotics.dem.uc.pt/pedro.

neto/GS3.html (accessed 15 December).
Video 2 (2010), “Robot path adjustment – laser camera”,

available at: http://robotics.dem.uc.pt/pedro.neto/GS4.html

(accessed 15 December).
Video 3 (2010), “Robot path adjustment – force sensor”,

available at: http://robotics.dem.uc.pt/pedro.neto/GS5.html

(accessed 15 December).

Corresponding author

Pedro Neto can be contacted at: pedro.neto@dem.uc.pt

High-level robot programming based on CAD

Pedro Neto et al.

Industrial Robot: An International Journal

Volume 39 · Number 3 · 2012 · 294–303

303

To purchase reprints of this article please e-mail: reprints@emeraldinsight.com

Or visit our web site for further details: www.emeraldinsight.com/reprints

