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Abstract The paradigm for robot usage has changed in the last few years,
from a scenario in which robots work isolated to a scenario where robots
collaborate with human beings, exploiting and combining the best abilities of
robots and humans. The development and acceptance of collaborative robots
is highly dependent on reliable and intuitive human-robot interaction (HRI)
in the factory floor. This paper proposes a gesture-based HRI framework in
which a robot assists a human co-worker delivering tools and parts, and holding
objects to/for an assembly operation. Wearable sensors, inertial measurement
units (IMUs), are used to capture the human upper body gestures. Captured
data are segmented in static and dynamic blocks recurring to an unsupervised
sliding window approach. Static and dynamic data blocks feed an artificial
neural network (ANN) for static, dynamic and composed gesture classification.
For the HRI interface we propose a parameterization robotic task manager
(PRTM), in which according to the system speech and visual feedback the
co-worker selects/validates robot options using gestures. Experiments in an
assembly operation demonstrated the efficiency of the proposed solution.

Keywords Human-Robot Interaction · Collaborative Robotics · Gesture
Recognition · Intuitive Interfaces

1 Introduction

Collaborative robots are increasingly present in manufacturing domain, shar-
ing the same workspace and collaborating with human co-workers.This col-
laborative scenario allows to exploit the best abilities of robots (accuracy,
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Fig. 1 Overview of the proposed gesture-based HRI framework.

repetitive work, etc.) and humans (cognition, management, etc.) [1][2]. The
development and acceptance of collaborative robots in industry is highly de-
pendent on reliable and intuitive human-robot interaction (HRI) interfaces
[3], i.e., making robots accessible to human beings without major skills in
robotics. Collaborative robots and humans have to understand each other and
interact in an intuitive way, creating a co-working partnership. This will allow
a greater presence of collaborative robots in industrial companies which are
struggling to have ever more flexible production due to consumer demand for
customized products [4]. For example, a human-robot collaborative platform
for constructing panels from preimpregnated carbon fibre fabrics in which the
human and robot share the workspace promoting situation awareness, danger
perception and enrichment of communication [5].

Instructing and programming an industrial robot by the traditional teach-
ing method (text and teach pendant based methods) is a tedious and time-
consuming task that requires technical expertise [6]. In addition, these modes
of robot interfacing are hard to justify for flexible production where the need
for robot re-configuration is constant. Recently, human-robot interfaces based
in robot hand-guiding (kinesthetic teaching) and haptic interfaces demon-
strated to be intuitive to use by humans without deep skills in robotics [7].
In addition, advanced and natural HRI interfaces such as human gestures and
speech still lack in reliability in industrial/unstructured environment [8]. An
interesting study reports the impact of human-robot interfaces to intuitively
teach a robot to recognize objects [9].The study demonstrated that the smart-
phone interface allows non-expert users to intuitively interact with the robot,
with a good usability and user’s experience when compared to a gesture-based
interface. The efficiency of a conventional keyboard and a gesture-based in-
terface in controlling the display/camera of a robot is presented in [10]. The
gesture-based interface allowed smoother and more continuous control of the
platform, while the keyboard provided superior performance in terms of task
completion time, ease of use, and workload.

Making an analogy with the way humans interact and teach each other,
allows us to understand the importance of gesture-based HRI. Static gestures
are human postures in which the human is static (small motion like body
shaking can occur) and dynamic gestures are represented by a dynamic be-
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haviour of part of the human body (normally the arms). Gestures can be used
as an interface to teleoperate a robot, allowing to setup robot configurations
and combine with other interfaces such as kinesthetic interface and speech.
For instance, a human co-worker can point to indicate a grasping position to
the robot, use a dynamic gesture to move the robot to a given position and
use a static gesture to stop the robot [11,12]. This scenario allows the human
co-worker to focus on the process task and not in the robot programming [13].

Fig. 1 illustrates the proposed framework. Static and dynamic gesture data
are acquired from upper body IMUs, segmented by motion, and different ANNs
are employed to classify static and dynamic gestures. Recognized gesture pat-
terns are used to teleoperate/instruct a collaborative robot in a process con-
ducted by a parameterization robotic task manager (PRTM) algorithm. The
system provides visual and speech feedback to the human co-worker, indicating
to the user what gesture was recognized, or if no gesture was recognized.

Depending on the industrial domain and the company itself, the shop floor
presents restrictions to the technologies used in the manufacturing processes.
The implementation of human-robot collaborative manufacturing processes is
today a main challenge for industry. Beyond the related human factors, the ad-
vanced human-robot interfaces (gestures, speech, hybrid, etc.) are constrained
by the shop floor conditions. In noisy environments the human-human verbal
communication is difficult to achieve or prohibitive in some cases, especially
when the workers are using earplugs. In this scenario speech interfaces are not
efficient and gesture interfaces are a valid alternative. On the other hand, con-
fined spaces hamper the use of arm gestures. In these conditions, the design
of the collaborative robotic system has to be adapted according to the specific
manufacturing conditions.

In this study we assume that the shop floor environment is noisy and not
confined in space, so that gestures are used to interface with the robot. Our
proposed approach brings benefits and it is practically relevant in the context
of flexible production in small lot sizes [8,14], namely:

1. The human co-worker and robot work in parallel, while the robot is ready
to assist the human when required;

2. The use of the robot reduces the exposition of the human co-worker to poor
ergonomic conditions and possible injuries (through hand-guiding the robot
can be adjusted online to the human body dimensions);

3. The use of the robot reduces error in production since the work plan is
strictly followed and managed by the PRTM;

4. The robot assists the human in complex tasks that cannot be fully auto-
mated, reducing the cycle time;

5. The introduction of the collaborative robot improves the quality of some
tasks when compared with human labour;

6. The collaborative robot allows to reduce drastically the setup time for a
new product or variant of a product. This is critical in small lot production.
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This work was developed according to the needs of the project ColRobot1,
which intends the development of a collaborative robot for assembly operations
in automotive and spacecraft industry. The robot should be able to assist
workers, acting as a third hand, by delivering parts and tools for the assembly
process.

Section II presents the segmentation by motion process. Section III details
the proposed classifiers and the feature dimensionality reduction and regular-
ization. The robot task manager is presented in section IV, while experiments
and results are shown in section V. Finally, the conclusion and directions for
future work are in section VI.

1.1 Challenges, Proposed Approach and Contributions

The problems and challenges to address in collaborative HRI are multiple.
Especial attention has to be devoted to the reliability of the existing inter-
faces, the accuracy of gesture classification in continuous and real-time, and
the interface with the robot. This is especially important in a situation where
a wrong classification of a gesture may lead to accidents/collisions. The HRI
interface has to be prepared to manage this situation, having validation proce-
dures and hardware capable to ensure safety in all circumstances. In presence
of an unstructured/industrial environment, several challenges can be pointed
out:

1. Achieve high gesture recognition rates (close to 100%) and assure the gen-
eralization capability in respect to untrained samples and new users (user
independent). The appearance of false positives and false negatives should
be reduced to a minimum;

2. Combine and fuse sensor data to better describe the human behavior (hand,
arms and body in general) with accuracy, no occlusions and indepen-
dently from environment conditions (light, magnetic fields, etc.). Selection
of proper gesture features according to each specific sensor;

3. Intuitive and modular interfacing with robot, ensuring the management
and coordination of human and robot actions. The human co-worker has
to receive feedback in anticipation related with future robot actions.

In this paper we propose a gesture-based HRI framework in which a collabora-
tive robot acts as a “third hand” by delivering to the human shared workplace
tools, parts, and holding work pieces while the human co-worker performs as-
sembly working operations on it. This framework was tested in an standard
manufacturing assembly operation.

The proposed gesture-based HRI, Fig. 1, relies on IMUs to capture human
upper body gestures and a ultra wideband (UWB) positioning system to have
an indication of the relative position between human and robot. Static and
dynamic segments are obtained automatically with a sliding-window motion

1 https://www.colrobot.eu/
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detection method. Static segments will input the classification of static ges-
tures (SGs) and dynamic segments will input the classification of dynamic
gestures (DGs) after up- or down-sampling of gesture frames using bicubic in-
terpolation. To avoid false positives/negatives, we implemented what we call
composed gestures, which combine SGs and DGs in a given sequence. We
proved that ANNs are reliable to classify both SGs, DGs and consequently
the composed gestures. A PRTM correlates the classified gestures with actual
commands to be sent to a robot and automatic speech and visual feedback for
the co-worker.

Inspired by the way humans interact with a phone auto attendant (digi-
tal receptionist) in which computer speech feedback indicates to the human
the phone number to select according to the desired service (navigate in the
menus), our proposed gesture-based HRI interface works in a similar way. The
PRTM uses computer speech and visual feedback to indicate the options avail-
able to the human co-worker (for example bring a tool, a part or holding a part
by setup a kinesthetic teaching mode) and the human uses gestures to select
and validate the existing options. This is a modular solution (other function-
alities can be added), intuitive (the co-workers does not have to remember a
large number of gestures), and flexible (adapted to different scenarios, users
and robots). The PRTM can be customized to run with speech recognition
commands or robot touch commands instead gestures. Due to the advances in
speech recognition in the last two decades it is expected that such a solution
will work with a high level of reliability in silent environments. Nevertheless,
the use of automatic speech feedback (using headphones) combined with visual
feedback (using a monitor installed in the robotic cell) to the human demon-
strated to be effective. The feedback information is redundant so that when
the level of noise is too high the human co-worker can follow the information
in the monitor screen. Both audio and visual feedback provides information
about robot state, the next task of the sequence and if the task ended.

The human co-worker is free to move in the workspace, which may conduct
to the appearance/classification of gesture false positives (human behaviors are
unexpectedly classified as gestures). To avoid this scenario, since the UWB
provides human positional data, gesture classification is only activated when
the human is in a specific place in front of the robot (other places may be
defined). In addition, the classifiers only act when the PRTM is expecting a
given gesture during a parameterization phase. The human co-worker selects
from the available library what gestures associate to the robot actions managed
by the PRTM, customizing the human-robot interface.

The experiments performed in an assembly operation demonstrated the
following contributions:

1. The proposed unsupervised segmentation allows to detect all static and
dynamic motion blocks, i.e., when a given static or dynamic gesture starts
and ends;
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2. Gesture recognition accuracy is relatively high (90% - 100%) for a library
of 8 SGs and 4 DGs. These results were obtained in continuous, real-time
and with seven different subjects (user independent);

3. A good generalization can be achieved with respect to untrained samples
and new subjects using the system;

4. The PRTM demonstrated efficiency, reliability, and easy to use behaviour.
Several users indicated in questionnaires that it is easy to understand the
speech and visual instructions to select robot tasks and use the robot as a
“tool”, without skills in robot programming.

1.2 Related Work

Collaborative robotics is an emerging and multidisciplinary research field, in
which gesture-based HRI is an active research topic. Gestures are a meaning-
ful part of human communication, sometimes providing information that is
hard to convey in speech [15]. Gestures can be categorized according to their
functionality [16]. Communicative gestures provide information that is hard
to convey in speech, for example command gestures [17], pointing [18], ges-
tures to represent meaningful, objects or actions, and mimicking gestures [19,
17]. Gestures have been proven to be one of the most effective and natural
mechanisms for reliable HRI, promoting a natural interaction process. In the
context of HRI, they have been used for robot teleoperation, and to coordinate
the interaction process and cooperation activities between human and robot.
As stated in [7], a gesture-based robotic task generally consists of individual
actions, operations, and gestures that are arranged in a hierarchical order.
Also, there is not necessarily a one-on-one relationship between gestures and
actions, one gesture can encode several actions. Therefore, a hierarchical chain
of gestures is required to perform a certain task. For example, the user can
point to an object in order to select it, but the action to be taken in respect
to that object is unknown to the system. The actions can be picking up the
object, painting it, welding it or inspecting it, among others.

Recognized human gestures and actions can be applied to define robot mo-
tion directions [20] and to coordinate the interaction process and cooperation
activities [21]. Some authors discuss what gestures are the most effective in
improving human robot interaction processes [22,23].

Some gestures, although not all, can be defined by their spatial trajec-
tory. This is particularly true for pantomimic gestures [19], which are often
used to demonstrate a certain motion to be done, e.g., a circle. Burke and
Lasenby focused with success on using Principal Component Analysis (PCA)
and Bayesian filtering to classify these time series. In [24], Shao and Li pro-
pose the use of an estimation of integral invariants – line integrals of a class
of kernel functions along a motion trajectory – to measure the similarity be-
tween trajectories. They also propose boosting the classification using machine
learning methods such as Hidden Markov Models (HMM) and Support Vector
Machine (SVM).
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Gesture spotting, either static or dynamic, is an active area of research with
many possible applications. The problem becomes more challenging when ges-
tures are recognized in real-time [13]. The difficulty is that gestures typically
appear within a continuous stream of motion. Temporal gesture segmentation
is the problem of determining when a gesture starts and ends in a continuous
stream of data. Segmentation should also decrease the number of classifica-
tions performed, reducing the processing load and enhancing the real-time
characteristic of a system. When the segmentation is incorrect the recognition
is more likely to fail [25]. Analyzing continuous image streams is a challenge
to solve spatial and temporal segmentation [26].

The input features for gesture recognition are normally the hand/arm/body
position, orientation and motion [27], often captured from vision sensors. How-
ever, it is difficult to construct reliable features from only vision sensing due
to occlusions, varying light conditions and free movement of the user in the
scene [28,17]. With this in mind, several approaches to gesture recognition
rely on wearable sensors such as data gloves, magnetic tracking sensors, iner-
tial measurement units (IMUs), Electromyography (EMGs), etc. In fact, these
interaction technologies have been proven to provide reliable features in un-
structured environments. Nevertheless, they also place an added burden on
the user since they are wearable. Data from commercial off-the-shelf devices
like a smartwatch can be used to recognize gestures and for defining velocity
commands for a robot in an intuitive way [29].

Researchers have used various methods such as HMM, ANN, SVM, Dy-
namic Time Warping (DTW), deep learning, among other techniques, to recog-
nize gesture patterns. HMMs can be used to find time dependencies in skeletal
features extracted from image and depth data (RGB-D) with a combination of
Deep Belief Networks (DBNs) and 3D Convolutional Neural Networks (CNNs)
[30]. Deep learning combined with recurrent networks demonstrated state of
the art performance in the classification of human activities from wearable
sensing [31]. ANNs demonstrated superior performance in the classification
of high number of gesture patterns, for example an accuracy of 99% for a li-
brary of 10 dynamic gestures and 96% for 30 static gestures [13]. Field et al.
used a Gaussian Mixture Model (GMM) to classify human’s body postures
(gestures) with previous unsupervised temporal clustering [32]. A Gaussian
temporal smoothing kernel is incorporated into a Hidden-State Conditional
Random Fields (HCRF) formulation to capture long-range dependencies and
make the system less sensitive to input noise data [33].

Hand detection is critical for reliable gesture classification. This problem
has been approached using wearable and vision sensing. Recent studies report
interesting results in hand detection and gesture classification from RGB-
D video using deep learning [34]. Boosting methods, based on ensembles of
weak classifiers, allow multi-class hand detection [35]. A gesture-based inter-
face based on EMG and IMU sensing report the classification of 16 discrete
hand gestures which are mapped to robot commands [12]. This was material-
ized in point-to-goal commands and a virtual joystick for robot teleoperation.
A challenging study deals with a situation in which users need to manually
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control the robot but both hands are not available (when users are holding
tools or objects in their hands) [23]. In this scenario, hand, body and elbow
gestures are recognized and used to control primitive robot motions. Gestures
can also be used to specify the relevant action parameters (e.g. on which object
to apply the action) [36]. The study refers that according to the experiments
with 24 people the system is intuitive to program the robot, even for a robotics
novice [36]. The required HRI reliability and efficiency can be achieved through
a multimodal interactive process, for example combining gestures and speech
[37]. Multimodal interaction has been used to interact with multiple unmanned
aerial vehicles from sparse and incomplete instructions [38].

Gesture recognition associated to HRI is today an important research topic.
However, it faces important challenges such as the large amount of training
data required for gesture classification (especially for deep learning) and prob-
lems related with appearance of false positives and false negatives in on-line
classification. Moreover, many studies approach gesture-based HRI in an iso-
lated fashion and not as an integrated framework that includes segmentation,
classification and the interface with the robot.

2 Segmentation

The segmentation of continuous data streams in static and dynamic blocks de-
pends on several factors: (1) interaction technologies, (2) classification method
(supervised or unsupervised), (3) if gestures are static, dynamic or both, (4)
if the inter-gesture transitions (IGT) were previously trained or not, among
other factors. Another problem is related with the difficulty to eliminate the
appearance of false positives and false negatives. In the context of gesture
segmentation, it can be stated that false negatives are more costly than false
positives since they divide the data representing a dynamic gesture into two
sections, corrupting the meaning of that gesture. False positives are more eas-
ily accommodated by the classifier, which can report that the pattern is not a
trained gesture.

Real-time segmentation relies on the comparison of the current state (frame)
f i with the previous states, {fi−1, . . . , fi−η}. We propose a method to segment
a continuous data stream into dynamic and static segments in an unsuper-
vised fashion, i.e. without previous training or knowledge of gestures and the
sequence, unsegmented and unbounded [25]. The method detailed in [25] was
partially implemented and customized to the specific sensor data used in this
study (input data, sliding window size and thresholds). We propose establish-
ing a feasible (optimal or not) single threshold for each motion feature using a
genetic algorithm (GA) – because the performance function is non linear and
non smooth – fed by a set of calibration data. The GA parameters were ob-
tained by manual search. Gesture patterns with sudden inversions of movement
direction are analyzed recurring to the available velocities and accelerations.
The proposed method deals with upper body gesture motion patterns vary-
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ing in scale, rate of occurrence and different kinematic constraints. A sliding
window addresses the problem of spatio-temporal variability.

We consider that there is motion if there are motion features above the
defined thresholds. The threshold is a vector, t0, with a length equal to the
number of motion features chosen, p. The features obtained from a frame
are represented by the vector t. The sliding window T is composed of w
consecutive frames of t. At an instant i, the real-time sliding window T(i) is:

T(i) =
[
t(i− w + 1) · · · t(i− 1) t(i)

]
(1)

At each instant i, the w sized window slides forward one frame and T(i) is
updated and evaluated. A static frame is only acknowledged as such if none
of the motion features exceed the threshold within the sliding window. This
way, we guarantee that a motion start is acknowledged with minimal delay
(real-time). On the other hand, this also causes a fixed delay on the detection
of a gesture end, equal to the size of the window w.

The proposed method to achieve the motion function m(i) relies in the
computation of the infinite norm of a vector % that contains feature-wise binary
motion functions:

m(i) =

{
1, if ‖%‖∞ ≥ 1

0, otherwise
(2)

where vector %, for each instant of time i, is calculated by comparing the sliding
window with the threshold vector:

%m = (max
g
|Tmg| ≥ ks · t0m), m = 1, . . . , p,

g = 1, . . . , w
(3)

in which ks represents a user-defined threshold sensitivity factor and t0m the
vector of thresholds of the motion features. t0m is determined by an initial cal-
ibration process in which two sets of data with equal length/time are acquired:
static samples (recorded with the user performing a static pose) and motion
samples (recorded with the user performing slow movements that activate the
selected motion features). These data are used to estimate the segmentation
error caused by an arbitrary threshold vector, which is then optimized by a GA
with variables bounded by their maximum and minimum value in these data, a
population size of 100 and mutation rate of 0.075. The sensitivity factor is then
adjusted online for each user when needed by trial and error according to the
human body shaking behaviour and the speed a dynamic gesture is performed,
especially for gestures with sudden inversions of movement direction.

In an ideal system, the absence of movement would be defined by null
differences of the system variables between frames. Therefore, the simplest set
of features that can be used for this method is the frame differences, 4f , that
at an instant i is given by:

∆f (i) = f (i)− f (i− 1) (4)
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Fig. 2 Architecture of a feed-forward MLNN with n layers.

However, these features do not yield consistently reliable results. For example,
if we consider as input a position in Cartesian coordinates, this approach
performs poorly, since the differences would be relative to the coordinated
axis. A motion pattern with a direction oblique to an axis would have lower
coordinate differences compared to a pattern parallel to an axis with similar
speed, thus producing different results. This issue can be solved by replacing
the three coordinate differences with the respective Euclidean length, directly
acquired from the IMUs angular velocity ω(i).

‖ω (i)‖ =

√
ωx(i)

2
+ ωy(i)

2
+ ωz(i)

2
, i ∈ R+ (5)

In the presence of gesture patterns with sudden inversions of direction false
negatives are very detrimental to the classifier accuracy. The proposed solution
is adding an extra motion feature, the acceleration, a(i). The acceleration is at
its highest when an inversion of direction occurs, which solves the low velocity
problem. This feature does not cause false positives in a static gesture and
deals successfully with the inversions of movement on dynamic gestures. The
accelerations are directly acquired from the IMUs.

In summary, the features for segmentation by motion are the IMUs pa-
rameters representing motion, namely the accelerations and angular velocity.
They are organized in a feature vector t:

t(i) =
[
ω1(i) a1(i) · · · ωu(i) au(i)

]T
(6)

where ωu(i) is the angular velocity for IMU number u, and au(i) is the accel-
eration for IMU number u.

2.1 Multi-Layer Neural Networks

A two-hidden-layer Multi-Layer Neural Network (MLNN) is proposed, Fig. 2.
The state y(q+1) of each layer (q + 1) is defined by the state y(q) of the previous
layer (q):

y(q+1) = f (q+1)(y(q)) = s(q+1)
(
b(q+1) + W(q+1)y(q)

)
(7)
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where s is the transfer function, b is the biases vector and W is the weight
matrix. The estimation of b and W is obtained by training the network with
samples of which we know the classification result a priori (training samples).
Given a set of training samples X with known target classes tg (supervised
learning), the objective is obtaining weights and biases that optimize a per-

formance parameter E, e.g., the squared error E = (t− y)
2
. The optimization

is very often done with a gradient descent method in conjunction with the
backward propagation of errors, method called Backpropagation (BP). Specif-
ically, we used the Scaled Conjugate Gradient (SCG) BP method [39] which
has the benefits of not requiring user-dependent parameters and of being fast
to converge.

The performance function used was cross-entropy, Ece = −tg· logy, which
heavily penalizes very inaccurate outputs (y ∼ 0) and penalizes very little
fairly accurate classifications (y ∼ 1). This is valid assuming a softmax transfer
function was used on the last layer. A log-sigmoid function is also often used
slogsig(x) = 1/1+e−x, s ∈ [0, 1].

BP is an iterative method that relies on the initialization (often done ran-
domly) of the weight and bias vector, w̃1 (k = 1). The next step is determining
the search direction p̃k and step size αk so that E (w̃k + αk) < E (w̃k). This
leads to the update of w̃k+1 = w̃k + αkp̃k. If the first derivative E′

(
w̃k 6= 0̃

)
,

meaning that we are not yet at a minimum/maximum, then a new iteration is
made (k = k+ 1) and a new search direction is found. Else, the process is over
and w̃k should be returned as the desired minimum. BP variations typically
rely on different methods to find p̃k, determination of αk or new terms to the
weight update equation. This often leads to the introduction of user-defined
parameters that have to be determined empirically.

2.2 Feature Dimensionality Reduction and Regularization

For the SG no dimensionality reduction is proposed, since the feature space
is still small. To solve the issue of undetermined feature size of the DG, we
propose re-sampling with bicubic interpolation. It allows to transform a DG
sample X(i), i ∈ iD, X ∈Md×η, which has a variable number of frames η, into
a fixed-dimension sample X′, X′ ∈Md×η′ . Usually η′ ≥ η, being η′ arbitrarily
defined as the maximum η in all the samples i so that i ∈ iD. So, although in
almost every case the proposed transformation is up-sampling the sample, it
is also valid for new cases where η′ < η, effectively down-sampling the sample.

interp : <d×η →<d×η
′

X →X′
(8)

3 Robotic Task Manager

The gesture recognition acts in parallel with the called Parametrization Robotic
Task Manager (PRTM), which is used to parametrize and manage robotic tasks
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Fig. 3 Control architecture highlighting the central role of the PRTM. The PRTM receives
information from the gesture recognition system and sends commands to the robot. In
addition, the PRTM manages the feedback provided to the human co-worker.

Fig. 4 The three layers of the proposed PRTM. The BRING and KINESTHETIC options
are in the first layer. For the BRING option we have in the second layer two options to
select PARTS and TOOLS. In the third layer we have all the parts and tools available to
be selected.
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Fig. 5 BRING architecture with the role of the human co-worker, robot and feedback.

with the human co-worker in the loop, Fig. 3. Additionally, PRTM is used to
provide speech feedback to the user through computer text-to-speech (TTS),
and visual feedback using a monitor. The gesture recognition has implemented
the methods presented in previous sections such as data sensory acquisition,
raw data processing, segmentation, and static and dynamic gesture classifica-
tion. The communication between PRTM and the gesture classification module
is achieved by using sockets TCP/IP. The PRTM communicates with the robot
through Ethernet.

When a gesture (static or dynamic) is recognized a socket message is sent to
the PRTM with information about the recognized gesture. It works as a phone
auto attendant providing options to the human (speech feedback) which selects
the intended robot service using gestures. The proposed PRTM includes in the
first layer 2 options, BRING and KINESTHETIC, Fig. 4. The BRING option
refers to the ability of the robot to deliver parts, tools, and consumables to
the human co-worker, while the KINESTHETIC is related with the operation
mode in which the co-worker can physically guide the robot to the desired poses
in space to teach a specific task or to hold a part while he/she is working on
it. In the second layer, and for the BRING option, the user can select Tools
or Parts, with different possibilities in each one (third layer). The BRING
functionalities and operation actions related with the human co-worker, robot
and user feedback are detailed in Fig. 5. The robot poses were previously
defined using teach-in programming, i.e., moving the robot end-effector to the
target poses and saving them.

The interactive process starts with the user performing a gesture called
“Attention”. This gesture makes the system to know that the user wants to
perform a given robotic task parametrization. The speech and visual feedback
informs the human user about the selection options in the first layer. The user
has few seconds (a predefined time) to perform a “Select” gesture to select
the desired option. After this process, the PRTM through images and text
displayed in the monitor and TTS asks the user to validate the selected option
with a “Validation” gesture. If validated the PRTM goes to the next layer, if
not validated the system continues in the current layer. If the user does not
perform the “Select” gesture during the predefined time period, the PRTM
continues with the other options within the layer. The procedure is repeated
until the user selects one of the options or until the PRTM through TTS
repeats all of the options three times. The process is similar for the second
and third layer. In the third layer the PRTM sends a socket message to the
robot to perform the parametrized task. If required, at any moment the user
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can perform the “Stop” gesture so that the system returns to initial layer and
the robot stops.

The above interactive process consumes a significant amount of time. In
response to this problem, the PRTM can be setup with the pre-established
sequence of operations so that the human intervention resumes to accept or
not the PRTM suggestions in some critical points of the task being performed.
The pros and cons of this mode of operation are discussed in the Experiments
and Results section.

4 Experiments and Results

4.1 Setup and Data Acquisition

Five IMUs and a UWB positioning system were used to capture the human
upper body shape and position in space, respectively, Fig. 6. The collaborative
robot is a KUKA iiwa with 7 DOF equiped with the Sunrise controller.

The 5 IMUs (Technaid Tech-MCS) are composed by 3 axis acelerometers,
magnetometers and gyroscope. The IMUs are synchronized in the Technaid
Tech-MCS HUB and an extended Kalman filter is applied to fuse sensor data
to estimate IMUs orientation Euler angles α, β and γ. In Bluetooth connection
mode and for 5 IMUs the system outputs data at 25 Hz. These data will be
the input for the gesture recognition module.

The UWB (ELIKO KIO) provides the relative position of the human co-
worker in relation to the robot. This information is used to define if the human
is close to the robot. If the human is at less than 1 meter from the robot the
interactive mode is valid. The UWB tag is in the human’s pocket and the 4
anchors are installed in the working room.

The sensors are connected to a computer running MATLAB. Sensor data
are captured and stored in buffers. A script reads the newest samples from the
buffers and processes them. The stream of data is segmented by the motion-
threshold method detailed in section II, Eq. (6), considering a sensitivity factor
of 3.0, and with the following segmentation features related with the 5 IMUs:

t = [ω1 a1 ω2 a2 ... ω5 a5]
T

(9)

Concerning the classification features, a full frame of data from the IMUs is
represented by f , Eq. (10), namely the IMUs accelerations and Euler angles in
a total of 30 DOF. These features represent almost all representative data from
IMUs and were selected by manual search. A binary segmentation variable m,
Eq. (2), represents whether the frame belongs to a dynamic segment or not.

f = [ax1 ay1 az1 ... az5 α1 β1 γ1 ... γ5 m] (10)

Where axh, ayh and azh represent the accelerations (including gravity effect)
from IMUh with h = 1, ..., 5 along the coordinated axis of IMUh. The Euler
angles αh, βh and γh are relative to IMUh with h = 1, ..., 5. The frames f are
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Fig. 6 Wearable sensors applied for the proposed HRI interface, 5 IMUs and a UWB tag.

arranged in static and dynamic samples according to the segmentation output
m.

4.2 Gesture Data Set

According to the functionalities to be achieved and industry feedback, a dataset
of continuous static/dynamic gestures is used. It contains 8 SG, Fig. 7, and 4
DG, Fig. 8. These gestures are composed by upper body arm data captured
from IMUs, Eq. (10). Industry feedback was provided by production engineers
from automotive sector and by two shop floor workers that experienced the
system. They indicated that the number of gestures to be memorized by the
robot co-workers should be relatively small, the co-workers should be able to
customize each gesture to a given robot functionality, error in gesture classi-
fication should not cause a safety problem or to be detrimental to the work
being done, and the co-workers should have feedback about the process (for
example they need to know if the robot is moving or is waiting for a command).
They selected these gestures from a library of possible gestures we provided.
To avoid false positives/negatives, we implemented what we call composed
gestures, which are a mix of the SGs and DGs mentioned above. The composi-
tion of a composed gesture can be customized by each different user according
to the following rules: (1) the composed gesture begins with a static pose with
the beginning of a selected dynamic gesture B-DG, (2) a DG, (3) a static pose
with the end of the dynamic gesture E-DG, (4) an inter-gesture transition
(IGT), and (5) a SG. Three examples of composed gestures are detailed in
Fig. 9. However, several other combinations may be selected/customized by
each different user.

The training samples for SGs S(iS) and DGs S(iD) were obtained from two
different subjects, subjects A and B (60 samples each subject for each gesture
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Fig. 7 Representation of the 8 SGs.

(8 SGs and 4 DGs) in a total of 720 trained patterns). These two subjects
participated in the development of the proposed framework.

4.3 Features

For the SG, m = 0, the features for classification are all the elements of f ,
excluding m. The notation for the ith-SG feature vector is z′S ∈ R30:

z′S = (ax1 ay1 az1 ... az5 α1 β1 γ1 ... γ5) (11)

For DG, the features will be derived from f , Eq. (11), namely the unit vec-
tors representing the human arms orientation. Each arm will be described by
two rigid links, with a unit vector representing each, arm oa(i) = (oax, oay, oaz)i
and forearm of(i) = (ofx, ofy, ofz)i. From the Euler angles of each IMU we
can define the spherical joints between each two sensors, such that we get three
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Fig. 8 Representation of the 4 DGs.

orthogonal rotation angles between each two sensors. From these we can con-
struct the direct kinematics for each arm of the human body and obtain the
unit vectors, Fig. 10. The notation for the ith-DG feature vector is z′D ∈ R12:

z′D = (oa1 oa2 of1 of2) (12)

Each DG, including gestures in the same class, normally have a variable
number of frames. For classification purposes, we need to establish a fixed
dimension for all DGs, recurring to bicubic interpolation as detailed in previous
section. Given a sample X(i) : i ∈ iD with η frames (X(i) ∈ M12×η), the
objective is to resample it to a fixed size η′. The value for η′ can be chosen
arbitrarily but higher values have a detrimental effect on the classification
accuracy. For that reason, η′ should have an upper bound such that η′ ≤
η, ∀η|X(iD) ∈ M12×η. For the proposed gesture dataset, the gesture length
varies between 42 and 68 frames. Therefore, we choose the lowest η of the
the DG samples, η′ = 42. Applying the bicubic interpolation, the result is
a matrix Z ∈ R12×42. Fig. 11 shows an example of gesture data before and
after compression and regularization for DG 2 (length reduced from 48 to 42
frames). It is visible that the data significance is maintained. By concatenating
every frame vertically, Z is transformed into a vector z ∈ R504:

z(i) = concat(Z(i)) =


Z

(i)
•1
...

Z
(i)
•42

 (13)

The last feature processing step is feature scaling. It is essential for achiev-
ing smaller training times and better network performance with less samples.
It harmonizes the values of different features so that all of them fall within
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Fig. 9 Example of 3 composed gestures. B-DG indicates the beginning of a DG, E-DG
indicates the end of a DG and IGT the inter-gesture transition between gestures.



Gesture-based human-robot interaction 19

Fig. 10 Human arms described by 2 unit vectors each (representing orientation of arm and
forearm).

Fig. 11 DG 2 gesture data before (at left) and after compression and regularization (at
right).

the same range. This is especially important when some features have distinct
orders of magnitude. Applying linear rescaling, l:

l(x) =
2x− X̂T

X̂T
(14)
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Fig. 12 LSTM network architecture.

where ̂ is the max+min operator defined in Eq. (15). XT =
(
∪z(i) : i ∈ iT

)
is the set of unscaled features of the training set. This operator is valid both for
static and dynamic gestures but the sample subsets used should be exclusive.

X̂i = maxXi• + minXi•, i = 1, ..., d (15)

4.4 Results and Discussion: Gesture Recognition

Experiments were conducted to verify the performance and effectiveness of
the proposed framework. It was tested by two subjects (subject A and B) that
contributed to the development of the system and created the gesture training
data set, and five subjects (subject C, subject D, subject E, subject F and
subject G) that are not robotics experts and are using the system for the first
time. Subjects F and G are automotive plant workers with 25-30 years old and
with expertise in the assembly of components for gear boxes. For the testing
dataset, each subject performed each SG 60 times (for the 8 SGs we have a
total of 480 testing patterns for each subject) and each DG 60 times (for the
4 DGs we have a total of 240 testing patterns for each subject).

The proposed solution for gesture segmentation aims to accurately divide a
continuous data stream in static and dynamic segments. The conducted exper-
iments consisted in the analysis of samples containing sequences of static and
dynamic behaviours. For each subject, ten composed gestures were analysed,
each with 2 motion blocks and 3 static blocks, Fig. 9.

Segmentation performance depends largely on the size of the sliding win-
dow. The segmentation accuracy was measured for different sliding window
sizes. Considering small sliding windows, there is excessive segmentation (over-
segmentation), leading to low accuracy. The best results were achieved for a
window size of 20.

The proposed unsupervised solution was compared with two supervised
methods, a one-class feed-forward neural network (ANN) and a Long Short-
Term Memory (LSTM) network, Fig. 12. For both networks, inputs are the
sliding window data and a single output neuron outputting a motion index.
They were trained with the same calibration data applied in the unsupervised
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Table 1 Segmentation error (%) comparing the unsupervised proposed solution with two
supervised methods.

Subject A B C D E F G

Proposed solution (unsupervised) 0% 0% 8% 4% 10% 7% 9%
ANN (supervised) 0% 0% 6% 4% 6% 2% 8%
LSTM (supervised) 0% 2% 8% 4% 10% 4% 8%

Fig. 13 ANN architecture for SG classification.

method to achieve an optimal sliding window size (data from subject A and
subject B).

Table 1 shows the segmentation error results. Results indicate that the
segmentation error for the supervised methods (ANN and LSTM) is identical
to the proposed unsupervised solution. For subjects A and B the segmen-
tation error is almost zero, justified by the fact that they tested a system
calibrated/trained with data they produced. The error detected for the other
subjects (C, D, E, F and G) is mainly due to oversegmentation. Generally,
oversegmentation occurs in the IGT phase and is not critical for the classifi-
cation. The proposed unsupervised method is effective, especially if calibrated
(threshold parameters) with data from the user.

Concerning SG classification, §(i), i ∈ iS , 60 samples from subject A and B
were used for the training set (i ∈ iST ) and 60 samples from subjects A, B, C,
D, E, F and G for the validation set (i ∈ iSV ). The validation set is not used
for optimization purposes. The loss of the network on this set is monitored
during optimization, which is halted when this loss stops decreasing in order
to prevent overfitting.

The MLNN architecture for SG classification, Fig. 13, has 30 neurons in
the input layer, which is the size of the SG feature vector (Eq. 11). Also, it is
composed by one hidden layer with 50 neurons, having the hyperbolic tangent
as the transfer function. The output layer has 8 nodes, the number of classes,
with the softmax function as transfer function.

The accuracy results, Table 2, indicate an overall classification accuracy on
the testing set for subject A of 99.0% (475/480) and for subject B of 98.50%
(473/480). For subjects C, D, E, F and G that did not train the system the
accuracy was reduced, Table 2. SG1 was mistaken with SG3, which are very
similar gestures if the user is not positioning the right arm correctly.
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Fig. 14 ANN architecture used for DG classification.

Table 2 Classification accuracy for both static and dynamic gestures.

Subject A B C D E F G

SGs (proposed ANN) 99.0% 98.5% 94.2% 93.5% 89.6% 95.0% 90.1%
DGs (proposed ANN) 99.5% 99.0% 95.8% 92.5% 94.6% 96.9% 95.4%
SGs (SVM) 98.6% 97.6% 92.4% 88.3% 84.3% 89.5% 87.5%
DGs (SVM) 98.2% 97.4% 92.1% 88.7% 91.1% 92.1% 88.1%

For DG classification §(i) : i ∈ iD, the training set is composed by 60
samples from subject A and B (i ∈ iDT ) and 60 samples from subjects A, B,
C, D, E, F and G for the validation set (i ∈ iDV ). The network architecture,
Fig. 14, has 504 input neurons, one hidden layer with 20 neurons and the
output layer has 4 output neurons, the transfer function is the hyperbolic
tangent in the first layer and the softmax function in the last layer.

The gesture classification accuracy, Table 2, shows a good accuracy for
subjects A and B. Even for subject C, D, E, F and G that did not train
the system the accuracy is relatively high. These good results are due to the
relatively small number of DG classes. It should be noted that the model was
not trained with data from subject C, D,E, F and G and no calibration was
performed.

For the composed gestures, the accuracy is directly related with the accu-
racy of the SGs and DGs.

Deep learning algorithms require a large number of training data, being
more suitable for the classification of images and sequences of images. The
results we obtained with the proposed ANN-based classification solution are
satisfactory, especially considering that we have few training data from wear-
able sensors and only from two subjects. Nevertheless, the results are accept-
able for subjects C, D, E, F and G, and excellent for the subject A and B.
In this context, we compared the proposed MLNN method with a common
classification method, SVM. The SVM was not optimized. We tried different
SVM methods recurring to the MATLAB Classification Learner, obtaining the
best results with the Medium Gaussian SVM with a Gaussian kernel function.
Results indicate that SVM method presents interesting results but compares
unfavourably with proposed MLNN method, Table 2. The results for subjects
F and G are in line, or even better, when compared with the results for the
other three subjects that did not train the system. This can be justified by
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Fig. 15 Human-robot collaborative process. In this use case the robot delivers tools and
parts to the human co-worker (top and middle) and the robot holds the workpiece while
the co-worker is working on it (bottom). For better ergonomics the co-worker adjusts the
workpiece position and orientation through robot hand-guiding. The monitor that provides
visual feedback to the user is also represented, indicating the task being performed, the next
task and asking for human intervention id required in each moment.

the fact that these workers are relatively young (average age of 25 years old)
and familiarized with information and communications technologies (ICT).

4.5 Results and Discussion: Robot Interface

The collaborative robot acts as a “third hand” by assisting the human co-
worker in an assembly operation by delivering to the human shared workplace
tools, parts, and holding work pieces, Fig. 15. After a gesture is recognized
it serves as input for the PRTM that interfaces with the robot and provides
speech and visual feedback to the human co-worker (section IV), Fig. 3.

The framework was tested by the seven subjects mentioned above. Sub-
jects C, D, E, F and G received a 15 minutes introduction to the system by
subjects A and B that contributed to the system development and created the
gesture dataset. From the library of 8 SGs and 4 DGs the seven subjects chose
the gestures that best suited them to associate with the PRTM commands:
“attention”, “select”, “validation”, “stop”, “abort” and “initialize” (according
to the functionalities detailed in section IV). Finally, subjects C, D,E, F and
G were briefed on the assembly sequence and components involved.

The complete assembly task is composed of subtasks: manipulation of
parts, tools, consumables, holding actions and screw. Some tasks are more
suited to be executed by humans, others by robots, and others by the col-
laborative work between human and robot. When requested by the human
co-worker (using gestures), the robot has to deliver to the human workplace
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the parts, consumables (screws and washers) and tools for the assembly pro-
cess. The parts and tools are placed in know fixed positions. Moreover, the
human can setup the robot in kinesthetic precision mode [40] to manually
guide it to hold workpieces while tightening the elements, Fig. 15. Although
the gestures recognition rate is high, the occurrence of false positives and neg-
atives was analysed. Our experiments demonstrated that if a given gesture is
wrongly classified the “validation” procedure allows the user to know from the
speech and visual feedback that it happened, so that he/she can adjust the
interactive process.

The collaborative activities may present the risk of potential collisions be-
tween human and robot. From the UWB positional data, when a threshold
separation distance is reached the robot stops. The estimation of the separa-
tion distance contemplates the velocity and reach of both robot and human
(dimensions of the human upper limbs), and the UWB error (about 15 cm).
In our experiments we considered a separation distance of 1 meter. This is
valid when the robot is delivering the tools and consumables to the human
co-worker. The robot is also performing these actions with a velocity accord-
ing to safety standards so that this stop operation is not mandatory. For the
kinesthetic teaching the separation distance is not considered. During the in-
teractive process, the reached target points can be saved and used in future
robot operations. The impedance controlled robot compensates positioning
inaccuracies, i.e., the co-worker can physically interact with the robot (kines-
thetic mode) to adjust positioning.

On average, the time that passes between the recognition of a gesture and
the completion of the associate PRTM/robot command is about 1 second. If
the setup of the PRTM is taken into account, with the selection of the desired
options, it takes more than 5 seconds.

The seven subjects filled a questionnaire about the proposed interface,
resulting in the following main conclusions:

1. The gesture-based interface is intuitive but delays the interactive process.
It can be complemented with a tablet to select some robot options faster;

2. It was considered by all the subjects that the “validation” procedure slows
the interactive process. The subjects F and G indicated that this is discour-
aging from an industrial point of view. Nevertheless, they indicated that
the problem is attenuated when we setup a given sequence in the PRTM
avoinding the validations;

3. The shop floor workers (subject F and G) indicated that the main concerns
they have are the safety (emergency buttons recommended) and the need
to make the interactive process as simple as possible. They adapted easily
to the system but pointed that this can be a difficult task for older workers.
At this stage we can assume that mainly these systems have to be operated
by young workers familiarized with basic ICT technologies;

4. Operating a version of the PRTM without all the validations proved to be
faster. Nevertheless, the system presents lower flexibility, i.e., requires an
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initial setup of the task sequence so that the human intervention resumes
to accept or not the PRTM suggestions with the NEXT command;

5. The composed gestures are more complex to perform compared to SGs and
DGs. Nevertheless, they are more reliable than SGs and DGs;

6. The automatic speech and visual feedback is considered essential for a
correct understanding of the interactive process, complementing each other;

7. The subjects that were not familiarized with the system (subjects C, D, E,
F and G) considered that working with the robot without fences present
some degree of danger (they did not feel totally safe). The industry workers
indicate the need of one or several emergency buttons placed close to the
robotic arm;

8. All subjects reported that the proposed interface allows the human co-
worker to abstract from the robot programming, save time in collecting
parts and tools for the assembly process, and have better ergonomic con-
ditions by adjusting the robot as desired. The ergonomics factor was rein-
forced from subjects F and G from industry.

The task completion time was analysed for the presented assembly use case.
The task completion time of the collaborative robotic solution (eliminating
the validation procedures) is about 1.4 times longer than when performed by
the human worker alone. The collaborative robotic solution is not yet attrac-
tive from an economic perspective and needs further research. This result is
according to similar studies that report that the collaborative robotic solu-
tions are more costly in terms of cycle time than the manual processes [41].
Nevertheless, the system demonstrated to be intuitive to use and with better
ergonomics for the human.

5 Conclusion and Future Work

This paper presented a novel gesture-based HRI framework for collaborative
robots. The robot assists a human co-worker by delivering tools and parts, and
holding objects to/for an assembly operation. It can be concluded that the pro-
posed solution accurately classifies static and dynamic gestures, trained with
a relatively small number of patterns, and with an accuracy of about 98% for
a library of 8 SGs and 4 DGs. These results were obtained having IMUs data
as input, unsupervised segmentation by motion and a MLNN as classifier. The
proposed parameterization robotic task manager (PRTM) demonstrated intu-
itiveness and reliability managing the recognised gestures with robot action
control and speech/visual feedback.

Future work will be dedicated to testing the proposed solution with other
interaction technologies (vision) and adapt the PRTM to be easier to setup
a novel assembly task. In addition we will perform more tests with industry
workers.
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