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Abstract

In this study we investigate the use of a laser scanner/range-finder and inertial
measurement units (IMUs) for the application of human-robot interaction in
a dynamic environment with moving obstacles/humans. Humans and robots
are represented by capsules, allowing to calculate the human-robot minimum
distance on-the-fly. A major challenge is to capture the capsules pose. Data
from a laser scanner and IMUs attached to the human body are fused to define
the torso relative position and the upper body (arms and chest) configuration,
respectively. Collision avoidance is achieved with a customized potential field’s
method that allows to adjust the pre-defined robot paths established off-line
while keeping the task target. The proposed framework is validated in real
environment using a SICK laser scanner, IMUs and a KUKA iiwa robot. Ex-
periments demonstrated the robustness of the proposed approach in capturing
human motion, calculating the human-robot minimum distance and the robot
behaviour that smoothly avoids collisions with the human.

Keywords: Human tracking, Human-robot interaction, Collaborative robots,
Sensor fusion, Laser scanner, IMU

1. Introduction

Robots operating around humans and sharing the workspace will become
a reality in a near future. However, robots need to become safe in the way
they interact and collaborate with humans. Safety is a major concern in col-
laborative robotics since robots and humans will coexist and share the same
workspace. A collaborative robot shall be capable of detecting obstacles (in-
cluding dynamic obstacles such as humans) by acquiring and processing sensor
data related to the robot surrounding environment. These data can be used to
calculate the proximity between robots and humans. The proximity is measured
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by the human-robot minimum distance, which is the main input for most of the
algorithms related to collision avoidance.

Industrial collaborative robots are a key element in the materialization of
the Industry 4.0 concept. Safety issues are one of the main factors which can
break down the boundaries that limit the direct contact between humans and
robots. Nowadays, in the factory floor, manipulators have to be separated be-
hind guarding fences and humans are not allowed to enter into the working area
of the robot while the robot is in operation. This is due to the fact that indus-
trial manipulators are still blind to their surroundings and pose a fundamental
danger to humans.

The standard ISO 10218 and the technical specification TS 15066 provide
guidelines for risk assessment implementation and define the safety requirements
for collaborative robots. An overview for the speed and separation monitoring
(SSM) methodology according to the TS 15066 is presented in [1]. This study
includes analytical analyses and discusses considerations for implementing SSM
in collaborative robotics. The directions for technological advancements toward
standardization are also discussed. Different approaches to risk assessment for
collaborative robots are presented in [2]. Risk assessment is required to evaluate
and anticipate risks for the human in human-robot collaboration. The safety
requirements and the potentialities of systems engineering allowing faster and
more reliable deployment of collaborative robotics are discussed in [3]. Applica-
tion use cases are detailed, namely for machine tending, automotive assembly
and palletizing applications.

A method for controlling the velocity of a collaborative robot to ensure
human safety even when the human-robot distance is smaller than the safe
separation distance is proposed in [4]. The allowable maximum safe velocity
is calculated using a collision model that predicts the collision peak pressure
and the peak force in case of collision. The pressure and force threshold from
ISO/TS 15066 are used to estimate the allowable maximum velocity of the
robot as a function of the distance between the robot and the human. In [5], an
optimization of safeguarded workspaces is introduced under the ISO/TS 15066
SSM mode. A trajectory-dependent dynamic speed and separation monitoring
volume is considered for establishing the minimum safety volume. An interesting
study addresses human localization to enable SSM safety according to ISO/TS
15066 [6]. Wireless sensor networks distributed in fixed positions inside the
robotic cell are proposed to localize operators.

The number of existing studies approaching on-line collision avoidance ac-
cording to ISO/TS 15066 is very limited. Most of them present results in simu-
lation or do not discuss the implications of the ISO/TS 15066 in their laboratory
setups. In this paper we partially address the ISO 10218 and TS 15066 in the
sense that the collaborative scenario type is ruled by SSM. The robot on-line re-
acts to keep a separation distance to the human by on-line adjusting the nominal
path and speed.

The potentialities of collaborative robots are not yet fully explored, opening
a world of research and technology development opportunities. To achieve the
long-sought goal of having robots in human centred environments, human safety
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shall be guaranteed, and the possibilities of collision shall be eliminated. Thus,
the subject of collision avoidance is one of the essential questions that need to
be addressed for assuring the safety of the human co-worker when interacting
with a robot. Yet, collision avoidance algorithms are hard to develop, especially
due to the lack of reliable sensor data to estimate the human-robot minimum
distance on-line. Capturing accurate information from multiple sensor systems
in real-time and in an unstructured environment is still difficult to achieve.
Existing solutions relying on marker-based visual tracking such as Vicon system
are accurate but limited to relatively small areas and with significant cost [7].

Wearable inertial sensors have been used for human motion tracking [8], not
requiring external cameras or markers. They can be used in both outdoor and
indoor environment, with no light restrictions nor suffering from occlusions.
Nevertheless, drift is a major problem associated to these sensors, especially
over long periods of time. Some authors propose to correct the estimated quan-
tities (for example the position of the body with respect to a coordinate system
not fixed to the body) by updating these quantities based on biomechanical
characteristics of the human body, detection of contact points of the body with
an external world and adding other sensors to the system [9]. Our experience
indicates that drift is a real problem if not correctly addressed.

In our study, the IMUs from TECHNAID are MEMS-based sensors, which
are able to provide accurate data over short time intervals. However, over
long time intervals accuracy degrades due to the effect of MEMS’ characteris-
tic errors. The determination and compensation of these characteristic errors
(random noise, bias, drifts, orthogonality between axes, etc.) are contemplated
in our TECHNAID IMUs [10]. Measuring the earth’s magnetic field enables
an estimate of the orientation without drift. However, its measurement may
be affected by the presence of metal objects and electromagnetic noise. To
solve this problem, the TECHNAID IMUs incorporate a compensation system
that compensates the estimation of the orientation during transient magnetic
disturbances.

A human motion tracking approach combining a mobile robot (equipped
with a laser scanner) and an inertial motion capture system is proposed in [11].
The mobile robot is used to anchor the pose estimates of the human which is
wearing a motion capture suit equipped with 17 Xsens IMUs to estimate the
body posture. The system captures the motion of a human in large areas (out-
door) fusing data from laser and IMUs for more accurate tracking. The study
presents the trajectory of the human in meters scale (outdoor) but the entire
skeleton pose is not detailed. In our proposed approach we are using similar
sensors, laser and IMUs, but with only 5 IMUs for upper-body tracking. Our
aim is to detect the position of the entire human body in an area of about 2
meters maximum around the robot (the maximum reach of the robot manip-
ulator is around 1 meter). In this context, it is relevant to have accuracies in
centimetres scale for the whole human body tracking because, for example, the
human chest can be at 1 meter of the robot but the arm if extended can be
very close to the robot. A simple methodology to estimate the human torso
position from the legs position is proposed, so that the information related to
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human tracking is used to define the pose in space of the capsules representing
the human. The human-robot minimum distance is estimated and a customized
potential field’s method is implemented for human-robot collision avoidance.

Different methods for representing humans and robots geometry (normally
using spheres and capsules) have been proposed in literature. A computation-
ally efficient way to represent robots and obstacles relies on the use of primitive
shapes [12, 13]. Ellipses and spheres were used to represent robots and obsta-
cles, as in [14]. In [15], a humanoid is represented by cylinders since that such
representation allows for efficient calculation of the minimum distance between
geometries to perform self-collision avoidance. In [16], the GPU processing
power was used to calculate the minimum distance between objects represented
by meshes. This method provides a precise representation of objects, but it is
hard to implement. The skeletal algorithm proposed in [17] represents a frame-
work for self-collision avoidance of a humanoid robot represented by spheres and
cylinders. A robot represented by twelve bounding boxes (mainly cylinders)
was proposed in [13]. An advanced collision map for performing point-to-point
motion with collision avoidance capability in a robotic cell with two robotic ma-
nipulators in which each robot is represented by four cylinders is presented in
[18]. In [19], the use of depth cameras is studied to improve the monitoring in
a human-robot collaborative environment. This is important since the lack of
sensors reporting reliable data is a major problem in this kind of applications.
Different sensors have been developed for human tracking applied to robotics
field. Many solutions are based on vision sensing, including RGB-D sensor
tracking [19, 20]. An increasing number of approaches are using laser scanners,
2D and 3D [21, 22, 23]. From the previous studies, it can be concluded that
the choice of the geometric primitive to represent humans and robots in a given
environment is important for the accuracy of the representation and the compu-
tational cost required to compute the minimum distance. Critical importance
is also associated to the sensors for human motion tracking.

An obstacle avoidance approach based on the artificial potential fields (PF)
concept is introduced in the pioneering work of Khatib [24]. The robot is in
a hypothetical vector field influenced by forces of attraction that guide the
robot towards the target and forces of repulsion that repel it away from hu-
mans/obstacles. Subjected to these forces the robot finds its way to the target
while avoiding collisions. Recently, a depth space approach for collision avoid-
ance proposes an improved implementation of the potential fields method in
which an estimation of obstacle’s velocity was taken into consideration when
computing the repulsion vector [20]. Robot self-collision avoidance has been
studied, as well as the development of collision avoidance techniques for redun-
dant robots [25]. A general framework for movement generation and mid-flight
adaptation to obstacles is presented in [26]. Dynamic movement primitives
are extended such that arbitrary movements in end-effector space can be rep-
resented. A method for motion generation and reactive collision avoidance is
proposed in [27]. The method relies on physical analogies for defining attrac-
tor dynamics to generate smooth paths. The algorithm can run in the internal
control loop of the robot, which is an important issue for safety. An on-line
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collision avoidance system is proposed in [28]. Virtual 3D models of robots and
real images of human operators from depth cameras are used for monitoring
and collision detection purposes. It is presented a prototype for adaptive robot
control in which the result of collision detection has four safety strategies: the
system can alert an operator, stop a robot, move away the robot, or modify
the robot’s trajectory away from an approaching operator. These strategies are
activated based on the operator’s existence and location with respect to the
robot. Collision avoidance algorithms imply complex computations applied on
large amount of variables acquired in real-time from multiple sensors.

A reinforcement learning method applied to collision avoidance for manip-
ulators using neural networks is proposed in [29], the networks were trained
using data from simulations in Virtual Reality (VR), experimental tests were
carried out on a 6 DOF manipulator where the position of the end-effector is
controlled while the orientation of the end-effector is not taken into consider-
ation. The application of Particle Swarm Optimization (PSO) on the problem
of collision avoidance of redundant manipulators was studied in [30], tests were
carried out in simulation using a 5 DOF planar manipulator where the position
of the end-effector was controlled to reach a target position while avoiding col-
lision with obstacles and the orientation of the end-effector was not taken into
consideration. A method for discrete collision detection and obstacles proximity
computation applied to collision avoidance of robotic manipulators is proposed
in [31], the robot is approximated using flat end cylinders’, obstacles are detected
using Kinect camera and represented using convex hulls. Tests were carried out
in simulation implementing Baxter robot in ROS (Moveit! and RViz are used
for the simulation). Many of existing studies in human-robot collision avoidance
still present results in simulation environment.

An alternative approach to solve the collision avoidance problem is proposed
in [32]. However, such approach is restrictive since it assumes a priori complete
knowledge of obstacle’s trajectory. A study dedicated to collision avoidance
between two manipulators is in [33]. The problem was addressed by dividing
the work space of the manipulators into a shared work area, accessible to both
manipulators, and an external work area accessible to only one manipulator.
The authors added a processing layer into the control structure, in which point
to point control commands are processed before being sent to the controllers.
As consequence, the manipulators are allowed to operate in their own external
work area at any time. However, the presence of one of the manipulators inside
the shared work area will deny access to the other manipulator, causing it to
wait until the shared work area is free from the other manipulator. In [34] it
is proposed the Representation of Body by Elastic Elements (RoBE), which is
a method used for avoiding robot self-collisions. In this method each link is
covered by a fictitious elastic element, whenever the elements touch, a force is
generated and collision avoidance is achieved.

In this paper we propose to fuse IMUs and laser scanner data for human
tracking and consequent estimation of the human-robot minimum distance on-
line for collision avoidance purposes. Human and robot are represented by
capsules. Section 2 details how the poses of the capsules are defined in space
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Figure 1: (a) Human represented by 1 capsule, (b) human represented by 5 capsules and (c)
robot represented by 3 capsules.

using sensors data, where the position of the torso and the configuration of the
upper body (arms and chest) are established. Section 3 discusses the proposed
method to compute the capsule-capsule minimum distance. In Section 4, start-
ing from the robot pre-defined paths established off-line during the teach-in
phase, the proposed PF-based collision avoidance controller adjusts such paths
to avoid collisions. When the obstacle goes away the robot keeps the target and
continues the task. Section 5 presents the experiments and results obtained in
real world experiments. Finally, conclusions are presented in Section 6.

2. Geometric representation

The human and the robot are represented in space by capsules. The more
capsules we use, the higher is the accuracy and more challenging is to acquire
sensor data to define the pose of each capsule and more computational power
is required. Capsules are considered a good geometric primitive to represent
a human. A human can be represented by a single capsule, Fig. 1 (a). In
this scenario the arms are exposed such that the diameter of the capsule is
greater and the collision avoidance has to be setup for a larger human-robot
minimum distance. For this study, the torso and the arms are represented by
5 capsules, each arm is represented by 2 capsules and the torso and head by
1 capsule (we assume that the human is always standing straight), Fig. 1 (b).
The robot (KUKA iiwa with 7 DOF) is described by 3 capsules representing
the main robot links of this robot arm model, Fig. 1 (c). The pose of the robot
capsules in space is obtained from the measured robot joint angles, establishing
the beginning and end of each capsule.

The upper body configuration is captured using five IMUs attached to the
chest and arms. The position of the legs is captured using a laser scanner (SICK
TiM5xx) installed at the base of the robot working table. Assuming the human
is standing straight, the position of the torso can be estimated from the legs
positions.
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Figure 2: Laser scanner mounted at the level of the operator’s legs in the base of the robot
table. If the robotic arm is installed on a mobile platform the solution is similar.

2.1. Torso capsule position
Data from the laser scanner mounted at the level of the operator’s legs,

Fig. 2, are utilized to define the relative position of the capsule representing
the torso. Through TCP/IP connection the sensor (SICK TiM5xx) provides
the radius measurements along the scan-angle with a range of 270 degrees, a
scan-angular precision of 1 degree and with a maximum measurement radius
range of 8 meters. The methodology behind the algorithm for calculating the
torso position is divided into two steps:

1. Data acquisition and filtering;
2. Calculating the minima and the position of the torso.

2.1.1. Data acquisition and filtering
A TCP/IP server is implemented in MATLAB to acquire the measurements

from the laser sensor and decodes the received message. The result is stored in
an array of radius measurements against scan-angle. Fig. 3 shows the radius
measurements along the scan-angle as acquired from the laser sensor correspond-
ing to a scene where a human is standing in the scan field of the sensor. The
radius measurements are clipped to 1400 mm away from the sensor and the
contour of legs are projected into the plot as two minima. It is noticed that the
data are noisy so that two filtering methods are proposed: (1) filtering through
time and (2) filtering along the scan-angle.
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Figure 3: Raw data and FIR filtered of radius measurement with scan-angle, close ups show
filtered data are smoother in the critical parts of the curves.

2.1.2. Filtering through time
To filter noise in the measurements from the laser sensor a finite impulse

response (FIR) filter is utilized:

r(θ,t) = αrm(θ,t) + (1− α)r(θ,t−dt) (1)

Where r(θ,t) is the filtered measurement value of the radius at angle θ and time
t, rm(θ,t) is the measurement value of the radius at angle θ and time t, α is a scalar
from zero to one (defined by an iterative process according to actual response),
and dt is the update time interval between two consecutive scans. The results
of the application of the FIR filter are in Fig. 3.

2.1.3. Filtering along the scan-angle
To smooth out short term fluctuations of the radius measurements along the

scan-angle, a moving average (MVA) filter is used:

rf(θ,t) = rf(θ−dθ,t) −
r(θ−ndθ,t)

n
+

r(θ,t)

n
(2)

Where rf(θ,t) is the value of the MVA at angle θ and time t, dθ is the angular
resolution of the scanner, rf(θ−dθ,t) the value of the MVA at angle θ − dθ and
time t, and n is the number of averaging steps.

2.1.4. Calculating the minima and the position of the torso
The xy (floor plane) position of the torso capsule is calculated based on the

position of the legs. The polar coordinates of the legs correspond to the minima
in the plot. The minima can be calculated from peak analysis on the plot, Fig.
4, mirrored with respect to the axes of the scan-angle θ. Using the peak analysis,
the angle and the radius associated with the first leg (θ1, r1) and the second leg
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Figure 4: Filtered radius measurement with scan-angle. Minima are marked with green and
red dots representing the human legs.

(θ2, r2) are acquired. Afterwards, the position of the first leg x1 in Cartesian
space is calculated:

x1 =

[
cos(θ1)
sin(θ1)

]
(r1 + ρl) (3)

Where ρl is the radius of the leg. The Cartesian position of the second leg x2

can be calculated in the same manner. The position of the torso capsule xt can
be approximately considered to be at the middle distance between the two legs:

xt =
(x1 + x2)

2
(4)

Fig. 5 shows a laser scan with a human in the scan field of the sensor. The
scan field span of 270 degrees is satisfactory given that the sensor is mounted
at the corner of the robot table. Using the proposed algorithm the position of
the legs is detected, red and green dots, and from the legs coordinates the torso
position is approximated, black circle in Fig. 5.

2.2. Upper body configuration
To capture the configuration of the capsules representing the human upper

body, an IMU sensor is attached to the chest (IMU 1) and the other four sensors
are attached to the arms and the forearms (IMU 2, IMU 3, IMU 4 and IMU
5), Fig. 6. Each capsule is described by two vectors and a radius. The vectors
represent the position of the beginning and end of each capsule.

The quaternion measurements provided by the IMU sensors coupled with the
geometric information from the human co-workers body dimensions are used to
estimate the position of the capsules covering the coworker’s limbs in relation
to robot base. The procedure for performing the calculations is divided into the
following steps:
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Figure 5: Human legs detected in the laser scan field. Red and green dot represent the legs
and the black circle represents the torso.

Figure 6: Minimum distance between two capsules.

10



1. Calibration phase;
2. Calculating rotations of limbs with respect to base frame of the robot;
3. Calculating the position of the limbs capsules with respect to the base

frame of the robot.

2.2.1. Calibration
Each IMU measurement gives its orientation, in quaternion wref

imu
1, with

respect to a pre-defined reference frame. For the collision avoidance algorithm
the rotations shall be described in relation to the robot base frame using the
quaternion wb

imu. To calculate wb
imu, the rotation quaternion from the reference

frame to the robot base frame wb
ref shall be calculated. This is achieved by

performing an initial calibration phase. The IMUs are placed in a predefined
orientation with respect to the robot base before the system is initiated. In such
case the initial rotation quaternion wimu,init

b of the IMU frame with respect to
robot base is already known. By reading the initial IMU measurement wref

imu,init,
the quaternion wref

b is calculated:

wref
b = wref

imu,initw
imu,init
b (5)

As a result of the calibration phase, the rotation quaternion from the reference
frame of the IMU to the base of the robot wb

ref is calculated as the inverse of
the quaternion wref

b .

2.2.2. Limbs rotation
After calculating the orientation of the reference frame with respect to robot

base wb
ref , the quaternion measurements describing the IMU orientation with

respect to base frame of the robot wb
imu is calculated from the orientation

measurement of the IMU wref
imu, as the following:

wb
imu = wb

refw
ref
imu (6)

2.2.3. Limbs position
Five vectors on the human co-worker body are considered, Fig. 6. Owing to

the symmetry of the human body, the following elaboration and equations are
given for the right half of the co-worker’s body. For the other half of the body
identical methodology is applied. For the right half of the body three vectors
are considered:

1. Vector v3: a vector that spans the length of the right forearm, from the
elbow up to the wrist;

2. Vector v2: a vector that spans the right upper arm of the co-worker, from
the shoulder up to the elbow;

1The superscript ref stands for reference frame, and the subscript imu stands for the frame
of the IMU.
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3. Vector v1: a vector that spans from the chest up to the shoulder.

The IMUs are mounted firmly on the body of the co-worker according to:

• The chest’s IMU is mounted such that the x axis of the IMU is pointing
vertically down when the co-worker is standing straight up. In such case
the coordinates of the vector vimu1

1 as described in upper chest’s IMU
frame are [ −d1 d2 0 ] for the left shoulder and [ −d1 −d2 0 ] for
the right shoulder. d2 is the width of the co-worker shoulder divided by
two and d1 is the length of co-worker’s body taken vertically from the
chest up to the shoulder.

• The upper arm’s IMU is mounted such that the x axis of the IMU is
aligned with the upper arm’s length, in such case the coordinates of the
vector vimu2

2 as described in upper arm’s IMU frame are [ d3 0 0 ]. d3
is the length of the upper arm measured from the shoulder to the elbow.

• The forearm’s IMU is mounted such that the x axis of the IMU is aligned
with the forearm’s length. In such case the coordinates of the vector vimu3

3

as described in forearm’s IMU frame are [ d4 0 0 ]. d4 is the length of
the forearm measured from the elbow to the wrist.

The previous vectors are rotated back to the base frame of the robot:

vb
i = wb

imui
vimui
i

(
wb

imui

)−1 (7)

Where vimui
i , i = 1, 2, ...5, is the vector of human part described in the ith−imu

frame. wb
imui

is the quaternion describing the rotation of ith − imu in relation
to base frame of the robot Eq. (6) and

(
wb

imui

)−1 is the complex conjugate
wb

imui
.

The position vector of the shoulder point in the base frame of the robot pb
1

is calculated:

pb
1 = vb

1 + pb
0 (8)

Where pb
0 is the position of the chest point with respect to the base frame of

the robot, given that the co-worker is standing up all the time the xy position
of the co-worker’s chest point is the same as the position of the torso acquired
from the laser scanner. If we denoted l to the height of the co-worker’s chest
point from the xy plane of the base frame of the robot, then pb

0 is calculated:

pb
0 =

[
xb
t

l

]
(9)

Where xb
t is the xy position of the torso of the co-worker with respect to the

base frame of the robot, calculated by transforming the torso position estimation
(acquired from laser scanner measurement) xt into the base frame of the robot.
In this study the frame of the laser scanner is parallel to the base frame of the
robot such that xb

t is given by:
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xb
t = xt +

[
c1
c2

]
(10)

Where c1 is the x coordinate of the origin Ol of the scanner’s-measurement-
frame in the base frame of the robot, and c2 is the y coordinate of the origin Ol

of the scanner’s-measurement-frame in the base frame of the robot. The origin
Ol and the dimensions (c1, c2) are shown in Fig. 6.

The position vector of the elbow point in the base frame of the robot pb
2 is

given by:

pb
2 = vb

2 + pb
1 (11)

Accordingly, the position vector of the wrist point in the base frame of the robot
pb3 is:

pb
3 = vb

3 + pb
2 (12)

3. Minimum distance between capsules

The analytical minimum distance between capsules representing robot and
human(s) is calculated recurring to QR factorization. The method is detailed in
[35][36]. The process of calculating the minimum distance between two capsules
is reduced to the calculation of the minimum distance between two line segments
at the capsules axis. Each capsule can be defined by two vectors and a radius ρ.
One vector defines the beginning of the capsule’s axes-segment p and the other
at the end of that capsule’s axes-segment u. After mathematical manipulation,
the minimum distance is calculated from:

dmin =
√
uT
minumin + yTy − yTQQTy − ρ1 − ρ2 (13)

Where umin is a 2 × 1 vector representing the point of the region of feasible
solutions closest to the origin, Q is a 3 × 2 matrix whose column vectors are
of unit length and mutually orthogonal, and ρ1 and ρ2 are the capsules radius.
The QR method code is available in github2.

The algorithm was implemented in MATLAB with a graphical user interface
(GUI) to help to visualize the minimum distance between a human and a robot
represented by capsules for any selected pose of both human and robot, Fig. 7.

4. Collision avoidance

Inspired by the potential fields (PF) method [24], we propose a customized
version of the collision avoidance algorithm. Using this method the robot is

2https://github.com/Modi1987/Minimum-distance-between-capsules
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Figure 7: Human-robot minimum distance visualization in MATLAB GUI.

moving in a potential field, where the attraction vectors attract the end-effector
towards the target and vectors of repulsion repel the robot away from obstacles.
In this study the attraction vector acts on the end-effector and attracts it to
the target. The target is the pre-established nominal path defined off-line in the
robot teaching process (robot path considering that collision will not occur).
This error vector is a function of the error:

e = pe − ptarget (14)

Where e is the error vector between the end-effector and the target point in
the nominal path, pe is the position vector of the end-effector (updated from
the nominal path to avoid collision), and ptarget is the position vector of the
target (in the nominal path defined off-line). After calculating the error vector,
an anti-windup [37] proportional integral controller Φ is utilized for calculating
attraction vector vatt:

vatt = Φ(Kp,Ki, e) (15)

Where Kp and Ki are the matrices of the proportional and integral coefficients.
Using inverse kinematics methodologies [38], the angular velocities q̇att of the
robot joints due to the attraction vector are calculated using the damped least
squares [39]:

q̇att = JT
(
JJT + λI

)−1
vatt (16)

Where J stands for the Jacobian of the robot associated with the Tool Center
Point (TCP), the symbol T in the superscript stands for the matrix transpose
operator, λ is a damping coefficient and I is the identity matrix.

For achieving collision avoidance, a repulsion vector shall act on the point of
the robot closest to the obstacle/human. This vector repels the robot away from
obstacles. The main input for calculating the repulsion vector is the minimum
distance dmin between the obstacle and the robot, Eq. (13). After calculating
the minimum distance, and the points of the robot and the obstacle associated
with this minimum distance, the repulsion vector can be specified. The direction
of the repulsion vector s is calculated:
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s =
pr − po

|pr − po|
(17)

Where pr is the position vector of the point of the robot closest to the obstacle
and po is the point of the obstacle closest to the robot. After calculating the
direction of the repulsion vector, its magnitude is calculated:

frep =

{
krep

(
do

dmin−dcr
− 1

)
if dmin < do + dcr

0 if dmin > do + dcr
(18)

Where frep is the magnitude of the repulsive force, krep a repulsion constant,
dcr a critical distance below which the robot cannot be near the human, and
do+dcr is the distance at which the repulsion vector is activated. The repulsion
vector is calculated:

vrep = freps (19)

And the angular velocities due to the repulsion vector are:

q̇rep = JT
cp

(
JcpJT

cp + λI
)−1

vrep (20)

Where q̇rep are the angular velocities due to the repulsion vector and Jcp the
Jacobian associated with the point of the robot closest to the obstacle. Then,
the total angular velocities are calculated:

q̇ = q̇att + q̇rep (21)

Subjected to the angular velocities vector, the robot moves towards the target
while avoiding collisions with the obstacles.

The architecture of the proposed approach is detailed in Fig. 8.

5. Experiments, results and discussion

The control algorithms were implemented in MATLAB and the interface
with the KUKA iiwa was established using the KUKA Sunrise Toolbox provided
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Figure 9: KUKA iiwa robot equiped with a suction-pad covered by three capsules.

Clearance values
Dimension Value (mm)

δ0 45
δ1 143
δ2 124
δ3 47

Table 1: Clearance values between the surface of the robot and the capsules covering it as
shown in Fig. 9.

by us in GitHub [40]. The proposed collision avoidance framework was evaluated
in a real world experiment using the collaborative manipulator KUKA iiwa 7
R800 with a pneumatic flange. Measurements from the sensors are interpolated
with time considering the limitation of the slower device, the laser scanner,
which provides data at 50 Hz. The IMUs provide data at about 300 Hz so that
the implemented algorithms allow updating the robot state at a frequency of
275 Hz.

A pneumatic suction-pad is attached at the flange of the robot. Three cap-
sules cover the links of the robot and the suction-pad under any configuration,
Fig. 9. The upper arm and the lower arm of the robot are covered tightly
with two identical capsules (height 400 mm and diameter 230 mm) and a third
capsule is used to cover the suction-pad (height 250 mm and diameter 115 mm).
The capsules fit the robot tightly, yet there is some error in the representation
due to the deviation between the geometric surface of the robot and the surface
of the capsules. To quantify those errors the dimensions are presented in Table
1.

In Experiment 1 the robot is operating in a pick-and-place operation, moving
a box from a known location to another. The video that accompanies this article
shows the experiment. Detailing, the experimental process is divided into 3 sub-
tasks:

1. The human co-worker approaches the robot to place the box to be manipu-
lated by the robot in a known pose. The robot is in a static home position
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Figure 10: Experiment 1: the robot smoothly avoids collision when the human co-worker
approaches and continues with the pick-and-place operation when the human goes away. This
experiment is in the video that accompanies this article. 3D trajectories are shown in Fig. 12.

and smoothly reacts to avoid collision. When the human co-worker goes
away, the robot automatically returns to the pre-planned path to pick up
the box, Fig. 10;

2. The robot picks up the box and moves it to another location. During
robot motion the human co-worker approaches the robot to pick up a tool
on the top of the table. Again, the robot reacts to avoid collision, Fig. 10;

3. When the human goes way the robot continues the task and places the
box in the desired position, Fig. 10.

When the human approaches the robot to place the box or to do any other
task the robot automatically reacts by adjusting the pre-planned path (planned
off-line) in what we call agile-smooth behaviour to avoid collision, Fig. 10.
This means that the robot is agile to avoid collision when the human is at a
given distance to the robot arm and presents a smooth behaviour as the human
approaches the robot (the minimum distance decreases). When the human goes
away the robot automatically continues its work, keeping the task target. If the
robot is in a situation in which the collision is unavoidable the robot stops.

We conducted a quantitative analysis by recording the human-robot mini-
mum distance, robot velocity and the robot end-effector position, Fig. 11. In
Fig. 12, it is shown the paths of the Tool Center Point (TCP) of the end-effector,
and the path of the torso of the human. At the beginning of the test the robot is
stationary. When the human approaches the robot to place the box on the table
the human-robot minimum distance decreases to a minimum of 431 mm. The
robot velocity increases, maximum reached of 355 mm/sec, to compensate the
human approach, smoothly reacting to avoid collision with the co-worker. When
the human moves away the robot returns back to the pick-and-place operation.
When the human approaches the robot again to pick up the tool the process
is similar. Experimental tests also indicated that the system is well perceived
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Figure 11: Human-robot minimum distance, robot end-effector position and velocity recorded
during Experiment 1.
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Figure 12: Robot end-effector path and the human torso trajectory related to expeirmental
tests (Experiment 1) in Fig. 10, points (a), (b), (c), (d), (e), (f), (g) and (h). It is possible to
visualize that the robot path is modified when the human approaches the robot and then the
robot returns back to the nominal path. The human approaches the robot twice, to place the
box on the table and to take the screwdriver from the table.

by the human. The collision avoidance motion is smooth and natural, so that
the human does not perceive danger. The error from the representation of the
human and robot by capsules exists. However, since the separation distance is
higher than that error, it can be considered not problematic for the collision
avoidance. The capsules length and radius have to be adapted to each different
human and robot.

The proposed solution was also tested considering a human that passes in
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Figure 13: Experiment 2: the human approaching the robot from the side.

front of the robot (approaching the robot from the side) while the robot is
working, Experiment 2, Fig. 13. The human will not directly interact with
the robot but this is a common flexible manufacturing scenario where humans
and robots share the workspace. In this context, the robot has to react to
respect SSM and to avoid collision. At the beginning the robot is stationary
in home configuration and the human is walking in the negative y direction
towards the robot, Fig. 13. In such a case, the minimum distance decreases
to a minimum of 393 mm and the robot reacts to avoid collision in which the
maximum end-effector velocity reached is 548 mm/sec, Fig. 14. According to
ISO/TS 15066, safety requirements for collaborative robots indicate a maximum
robot velocity of 250 mm/sec. In our study, the robot reaches velocities superior
to 250 mm/sec in both experiments. These velocity values are reached when
the robot is moving away from the human to avoid collision. ISO/TS 15066
defines a velocity threshold not distinguishing if the robot is moving in the
human direction or in the opposite direction to avoid collision. By defining
250 mm/sec as the maximum robot velocity the human may collide with the
robot or at least the human has to reduce the walking and/or arms velocity.
Experiments also demonstrate that the human-robot minimum distance is never
less than 450 mm in Experiment 1 and 400 mm in Experiment 2. It is desirable
that a future revision of ISO/TS 15066 can contemplate the direction of robot
motion, i.e., if the robot is moving towards the human or if the robot is moving
away from the human to avoid collision. If it is ensured that the robot is moving
away from the human the maximum velocity allowed should be superior to 250
mm/sec. Moreover, such maximum velocity value should be defined according
to the actual human-robot minimum distance.

The experiments demonstrated the following contributions:

1. Efficient representation of the human(s) upper body and robot using 5
and 3 capsules, respectively;

2. IMUs and laser scanner demonstrated accuracy and reliability to define
each capsule pose in space and time. Error exists but is manageable for
the collision avoidance success;

3. Agile-smooth robot reaction to collision avoidance in which the robot
adapts the pre-established nominal paths (defined in the initial robot pro-
gram off-line) while keeping the task target unchanged. The robot finds
a way to get around the obstacles/humans and not to stop when they are
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Figure 14: Human-robot minimum distance, robot end-effector position and velocity recorded
during Experiment 2.

nearby;
4. Successfully testing with a real collaborative robot for a pick-and-place

operation. According to our knowledge, until now, very few studies have
implemented collision avoidance in real robot manipulators [19, 20, 16, 27],
being this study a novel contribution in that domain.

6. Conclusion

This article successfully proposed utilizing a laser scanner and IMUs sens-
ing technology for minimum distance calculation, an important input for the
human-robot collaboration applications. The proposed methodology integrates
into collision avoidance problem for collaborative robots sharing the space with
humans. Humans and robots were successfully represented by capsules with
data from a laser scanner and IMUs. QR factorization method was success-
fully applied to compute the minimum distance between capsules representing
human and robot. A customized potential fields method that allows to adjust
the pre-defined robot paths established off-line while keeping the task target
was proposed for collision avoidance. Although the number of studies reporting
collision avoidance with real collaborative robots while performing industrial
tasks is low, the proposed framework was validated in real environment, using
a real robot and sensors. Experiments demonstrated the robustness of the pro-
posed approach in which the robot smoothly avoids collisions with the human
co-worker while continues working keeping the task target.
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