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ABSTRACT This paper presents a literature review on pattern recognition of electromyography (EMG)
signals and its applications. The EMG technology is introduced and themost relevant aspects for the design of
an EMG-based system are highlighted, including signal acquisition and filtering. EMG-based systems have
been usedwith relative success to control upper- and lower-limb prostheses, electronic devices andmachines,
and for monitoring human behavior. Nevertheless, the existing systems are still inadequate and are often
abandoned by their users, prompting for further research. Besides controlling prostheses, EMG technology
is also beneficial for the development of machine learning-based devices that can capture the intention of
able-bodied users by detecting their gestures, opening the way for new human-machine interaction (HMI)
modalities. This paper also reviews the current feature extraction techniques, including signal processing
and data dimensionality reduction. Novel classification methods and approaches for detecting non-trained
gestures are discussed. Finally, current applications are reviewed, through the comparison of different EMG
systems and discussion of their advantages and drawbacks.

INDEX TERMS EMG, human-machine interaction, pattern classification, regression.

I. INTRODUCTION
Intuitive interfaces for prosthetic devices, robots and other
smart machines, are still inaccessible to the common indi-
vidual. Although there is a plethora of devices that facili-
tate HMI, there are obstacles in the use of those interfaces.
For example, gesture-based interfaces often rely in vision
sensors to capture human behavior. However, vision-based
systems are still very challenging to develop and do not pro-
vide enough reliability for demanding applications. Besides,
vision sensors are typically fixed in space and present lim-
itations, such as occlusions, that reduce their area of action
[1], [2]. Wearable sensors are alternative solutions that do not
have such limitations, but introduce new challenges and may
be cumbersome to wear when not well designed. An example
of such a system is shown in [1], where a data glove is used to
continuously decode hand gestures. However, hand gestures
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are insufficient for a reliable and intuitive interaction process.
Multimodal HMI interfaces combining gestures, speech, tac-
tile and visual cues are essential for a complete, accurate and
reliable interaction process. For instance, an individual can
point to indicate a target to a robot, use a dynamic gesture
to instruct the robot to move and a static gesture to stop the
robot. In this scenario, the user has little or nothing to learn
about the interface, focusing on the desired task and not on
the interaction modality. Nevertheless, all these modalities
require a number of sensors that can be cumbersome to
use, namely data gloves, magnetic trackers, inertial sensors,
microphones, cameras, etc.

Researchers are looking into the feasibility of using elec-
troencephalography (EEG) and EMG to decode the user’s
intentions [3]. For example, a data glove that is used to cap-
ture hand gestures may be replaced by a forearm band with
EMG sensors, making the interaction process more natural
since the user does not have to wear a glove. This is one of
the current research foci in the EMG field.
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In general, there are two types of EMG sensors, surface
EMG (sEMG) and intramuscular EMG sensors (imEMG).
imEMG sensors use needles that puncture the skin and con-
tact directly the target muscle. For this reason, imEMG pro-
vide better signal to noise ratio (SNR). However, they are
intrusive, uncomfortable, painful and difficult to setup. Some
researchers have found that there is no significant differ-
ence between the two types of sensors when measuring ges-
ture classification accuracy [4]. Despite these results, other
authors have found that imEMG are more accurate when the
gestures are complex motions, i.e., movements that change
multiple degrees of freedom (DOF) of the hand [5]. For
these reasons, this review focuses especially on surface EMG
sensors.

In this review, the basics of EMG signal acquisition and
filtering are presented in Section II. Afterwards, Section III
presents a detailed exposition of the state of the art
EMG-specific signal pre-processing techniques, feature
extraction and pattern classification methods. Section IV is
reserved for the review of the current EMG-based applica-
tions and finally, in Section V, the current research paths and
future challenges are described.

II. ELECTROMYOGRAPHY
This section aims to provide the reader with some intro-
ductory knowledge about the nature of electromyography
signals. Moreover, we describe the techniques used for EMG
signal acquisition, how they can be affected by the envi-
ronment and their limitations. Understanding the signals is
a fundamental step to extract features relevant to pattern
recognition and to design an overall robust recognition sys-
tem. A thorough description of an acquisition circuit, signal
conditioning and analysis is presented by Botter et al. [6].

A. SIGNAL OVERVIEW
Rather than reading the electric potential on the motor nerves,
an EMG electrode reads the electric potential generated in
the muscle fibers when they contract. An EMG electrode
usually consists of a pair of poles aligned along the mus-
cle fiber direction. There are also sensors with monopoles
which measure the potential in respect to other reference
electrodes. Monopoles have the advantage of allowing more
flexible setups, since any two poles can be connected to obtain
a reading. Bipolar electrodes are limited to specific elec-
trode widths. The distance between each electrode pole and
their diameter also have a significant influence on the EMG
signal [7].

The provenance of signalsmeasuredwith sEMGelectrodes
is the potentials generated by muscle cells when excited by
motor nerves, rather than the electric potentials within the
nerves themselves. However, there is a strong correlation
between these two potentials [8]. The EMG potential read-
ing is also correlated with the activation level of muscles
and the force they generate. However, this relationship is
nonlinear and difficult to model. sEMG signals have inher-
ently low SNR, which means that they are very susceptible

to environmental noise. Two important works in the field
that study EMG signals and their noise are in [9] and [10].
The first study describes methods to decrease the captured
noise, signal artifacts and interferences in EMG recordings,
as well as signal processing techniques for noise suppres-
sion (e.g. band-pass filtering, adaptive noise cancellation
filters and filters based on the wavelet transform). In [10],
Piervirgili et al. found that the environmental noise can be
significantly reduced by rubbing the skin surface with an
abrasive conductive paste. Other authors propose empiri-
cal mode decomposition (EMD) in order to suppress signal
noise [11], [12].

FIGURE 1. Longitudinal and transverse representations of the forearm
muscles, adopted from [4].

sEMG electric potentials are acquired with electrodes
placed on the surface of the skin just above the target muscle,
which is a non-invasive technique. A graphical representation
of the forearm muscles is presented in Fig. 1, [4]. The signals
obtained from these muscles are particularly interesting for
the actuation of hand prostheses and gesture recognition.
Farrell andWeir [4] found that with adequate processing tech-
niques, pattern recognition on signals measured with non-
targeted electrodes can be as successful as when measured
with targeted electrodes.While a targeted electrode is defined
as a surface electrode that is carefully positioned above the
target muscle, a non-targeted electrode is placed above the
muscle of interest but without concern for its positioning
accuracy. An example of non-targeted electrodes are the ele-
ments of a linearly spaced array of electrodes. Such a setup is
likely to capture signals from several muscles simultaneously.
On the other hand, Farrell did not study the effects on pattern
recognition (PR) accuracy caused by issues such as electrode
lift-off and shift.

The surface of the electrodes is typically silver and the
contact with the skin can be either wet, using a silver-chloride
gel, or dry (without any medium) [13].Wet contact electrodes
offer lower skin contact impedance, which reduces the effect
of external interference sources on sEMG electrodes and
improves SNR. However, the use of a gel is an inconvenience
for a user who might place and remove the electrodes several
times a day. On the other hand, since dry electrodes do
not require the use of a gel, the setup procedure is simpler.
Furthermore, they are typically kept in place by an elastic
band rather than an adhesive, meaning that they are fully
reusable. This would enable a user to wear and remove the
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sensors whenever necessary, which is especially important for
a user-friendly HMI system.

When the focus is the discrete pattern recognition of sEMG
signals, it is important that each pattern/class remains consis-
tent between experiments and that the features discriminate
the classes correctly. The consistency is very dependent on
the chosen set of features and can be negatively influenced
by electrode shifts, changes in arm posture [14], fatigue and
electrode-skin contact impedance, which changes in the pres-
ence of sweat [8]. EMG signals of the forearmmuscles can be
successfully decoded independently of the subject’s gender
and dominant hand [15]. Nevertheless, the study presented
in [15] was limited to the control of upper limb prostheses
and used only 5 classes, obtaining around 90% of recognition
rate (RR).

B. SIGNAL FILTERING
Although there are many different approaches to sEMG sig-
nal pre-processing, most sensors use high-pass filters in the
range of 10 to 50 Hz (sometimes higher) and low-pass filters
of around 500 Hz.Most of the times, a notch filter is also used
to remove power line interference at 50/60 Hz. Signal ampli-
fication is also necessary to improve the quality of its digitiza-
tion. The amplification is usually between 500 and 2000 fold.
Bipolar electrodes are typically arranged with a differential
amplifier in which the potential difference between the two
poles is amplified. This type of amplification is less likely to
capture external noise or signals from distant muscles.

In [17], Guerrero et al. present a novel circuit for a
double differential active electrode with comparatively low
complexity and cost. It is composed by a single quadruple
operational amplifier and few passive components, allowing
accurate recordings of sEMG signals with dry contacts while
also maintaining the advantages of differential amplification.
This circuit configuration is also shown to reduce crosstalk
between electrodes.

One of the first studies on EMG-based pattern recognition
uses a band-pass filter (BPF) of 10 to 500 Hz in which the
signal is amplified 1000 times and digitally sampled at a
rate of 1 kHz [18]. Wet disposable electrodes were used on
the biceps brachii and on the lateral head of triceps. The
system was tested with six types of motion: elbow flexion
and extension, wrist pronation and supination, and humeral
(shoulder) rotation in/out. Other authors propose the use of
a notch filter to reduce power line-induced interference [19].
A 30-400 Hz BPF was used and the signal is sampled by an
AD converter at a rate of 2.5 kHz. The authors claim that the
proposed filtering scheme avoids unstable signals for EMG
pattern classification. Another study proposed a similar setup
where the sEMG signals are filtered with a 20-500 Hz BPF
and digitally sampled at 2 kHz [20]. In this case, the authors
built a large acquisition prototype device with 57 wet con-
tact sEMG electrodes (5 mm diameter). A reference study
in the field uses a 20-450 Hz BPF on their sEMG signals
with sampling rates of 1 and 2 kHz [2]. The authors built a
self-contained signal acquisition armband (BioSleeve) with

FIGURE 2. sEMG signal enveloping, adopted from [16].

16 dry-contact sEMG electrodes. Fig. 2 shows a smoothed
signal from sEMGdata after being pre-processed using a BPF
and a low-pass filter [16]. A 10-500 Hz BPF (digital 4-order
Butterworth filter), a notch filter at 50 Hz and a sampling rate
of 1024 Hz was proposed in [21]. The authors reported the
successful control of an upper limb power-assisting exoskele-
ton with four electrodes on the upper limb: biceps-short head,
triceps-long head, flexor carpi radialis and extensor carpi
radialis. An EMG acquisition system dedicated to medical
studies with a BPF of 90-450 Hz band and 1 kHz sampling is
described in [15]. This system has a common-mode rejection
ratio (CMRR) above 100 dB. It uses 6 channels arranged
equidistantly around the forearm.

One of the advantages of systems that use dry contact
electrodes, such as the BioSleeve system [2], is that they do
not require precise placement of their electrodes.We consider
this feature an advantage because the electrodes are placed
on the forearm without gluing them to the skin, decreasing
the discomfort the user feels. However, dry contact electrodes
may experience slippage during a recording session, which
must be prevented with mechanical forces (e.g., springs)
or corrected in post-processing. Furthermore, the position
repeatability of the electrodes is typically low, especially if
the user is not a specialist, so post-processing is a better solu-
tion for the average user. A software-based solution benefits
from high density electrode arrays since it greatly increases
the likelihood that the relevant data points for gesture recog-
nition are picked up by the electrodes.

In [22], Spanias et al. propose a method for the detection
and compensation of disturbances in EMG recordings caused
by issues such as electrode shift, liftoff and short-circuit.
The detection is achieved by setting a threshold to a log-
likelihood metric. When a disturbance is detected, the EMG
data are disregarded and the classification only uses the undis-
turbed mechanical sensors, effectively minimizing the error
caused by the EMG disturbances on the prothesis’ control
loop. In another study, the use of high-density (HD) EMG to
overcome problems such as electrode shift and channel mal-
function is proposed [23]. When a longitudinal shift (in the
direction of the muscle fibers) is simulated, the recognition

39566 VOLUME 7, 2019



M. Simão et al.: Review on EMG Decoding and Pattern Recognition for HMI

TABLE 1. Summary of EMG signal filtering and power line suppression methods.

accuracy decreased from 96% to about 90%. A transverse
shift (perpendicular to the direction of the muscle fibers)
caused a reduction to about 80%. This technique is also
accurate even when a large proportion of channels is omitted.

A common challenge related to electrode-based sensor
systems such as EMG or electrocardiography (ECG) is how
to avoid or reduce external noise captured by the sensors.
These systemsmust be able to deal with different interference
sources such as the electric power source which feeds the
acquisition hardware. Owing to the low amplitude character-
istic of EMG signals, they are easily overwhelmed by electri-
cal disturbances. In order to reduce their negative effects in
the output signal, some guidelines should be followed during
the design of data acquisition setups, namely:

1) Arranging cables so that inductive and capacitive cou-
pling between different channels is minimized, e.g.,
separating wires connecting distinct electrodes [7];

2) Using differential amplifiers and/or a reference elec-
trode for common-mode rejection [15];

3) Skin preparation (shaving and/or rubbing with an abra-
sive conductive paste) in order to reduce the difference
between the electrode poles impedances [10].

In order to remove power line noise from raw recorded
EMG signals, the use of different post-processing methods
have been proposed. Examples are second-order recursive
digital notch filters at the power line frequency, regression-
subtraction [24] and spectrum interpolation [25]. In the cases
where a battery is used as a power source, its wires may also
introduce noise into the output signal because of electrode
pole impedance unbalances. These impedances change over
time in sEMG electrodes due to disturbances in the electrode-
skin interface. Table 1 summarizes a list of studies with an
emphasis on signal filtering and suppression of power line
noise.
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C. ELECTRODE ARRAYS
Researchers have been using high-density (HD) arrays of
electrodes for the acquisition of EMG signals in both the
longitudinal and transverse directions of muscle fibers, which
may eliminate the need for precise placement of the elec-
trodes, as mentioned in the previous section. The increase
in the number of channels also increases the likelihood of
capturing key EMG patterns. When electrode shift or liftoff
occurs, the topographical map of relative muscle activity
should stay roughly the same but shifted in a certain direc-
tion. However, increasing the number of channels, also
adding redundancy, requires proportionally more computa-
tional power to post-process the signals and to extract regres-
sion/classification features. The detection and correction of
electrode shift also add complexity to the recognition system.

Liu and Zhou use 57 EMG channels of which 48 are
arranged in a 6x8 grid (6 straps with 8 electrodes each) and
the remaining 9 channels are distributed across 3 other loca-
tions [20]. These locations are the first dorsal interosseous
(FDI), the thenar group and the hypothenar group. A lower
density array with 16 electrodes (4 straps with 4 bipolar
electrodes each) is presented and evaluated in [2]. The mea-
surements used dry contact electrodes worn in the forearm
which were kept in place by a stretching sleeve. This system
showed a high accuracy on gesture classification without
precise positioning of the electrodes. However, the gesture
classes must be retrained on each recording session.

Tkach et al. [32] tested various electrode grid sizes,
between 3x2 and 4x4, on transhumeral and shoulder dis-
articulated amputees who went under a targeted muscle re-
innervation (TMR) surgery. A major difference from other
approaches using electrode grids is that their arrangement
includes electrode poles connected across different muscle
groups. The authors indicate that it is possible that elec-
trode pairs in the transverse direction may record regular-
ities in activation patterns across different muscle groups,
improving PR accuracy. On an earlier study, the authors
demonstrated that wider inter-electrode spacing is beneficial
for PR.

Celadon et al. [33] have been studying the use of monopo-
lar high-density arrays (192 channels). This number of chan-
nels leads to a very high dimensionality of the EMG feature
set, which in turn increases the post-processing computa-
tional load. Online reduction of the number of channels is
proposed by the analysis of the topological distribution of the
activity areas and limiting feature calculation to areas with
significant activity. Nevertheless, the authors found that the
classification accuracy always decreases when EMG chan-
nels are dropped, using a linear discriminant analysis (LDA)
classifier.

High-density electrode grids have also been used for EMG
signal decomposition [34], [35]. EMG signals are com-
posed of superimposed motor unit action potentials (MUAP)
trains which cause motor units (MU) to contract. Therefore,
it should be possible to correlate complex EMG signals with

the firing of individual MUs. Solving this problem would
allow the detailed identification of the muscle contractions
and the force they generate, effectively opening the way to
improved prosthetics control, HMI and medical diagnosis.
In [34], Ning et al. propose the use of the K-means clustering
(KMC) method combined with modified convolution kernel
compensation (CKC) in order to reconstruct innervation pulse
trains (IPT) from EMG signals. A novel CKC technique was
proposed for real-time implementation, requiring processing
of about 3 s of EMG signal in the initialization stage [36].
Rasheed et al. [37] a Matlab toolbox with their approach
to EMG signal decomposition into MUAP trains. In [3],
Biagetti et al. present a technique for parametric model
estimation of MUAP from EMG signals using homomor-
phic deconvolution. Fast independent component analysis
(FastICA) can also be used for the identification ofMUs from
HD-EMG grids [38].

III. PATTERN RECOGNITION
This section presents the state of the art methods used in
the recognition of recurring patterns in EMG data streams.
Pattern recognition usually has three stages:

1) Signal pre-processing: reduction of the influence of
external noise sources and SNR improvement;

2) Feature extraction: determination of the gesture pattern
predictors;

3) Classification.
This section is structured according to the aforementioned
stages. Feature extractionmay originate feature vectors of rel-
atively high dimensionality, whether because a large number
of distinct features was chosen or because the number of sig-
nal channels is large. High dimensionality of the input space
of classification predictors may decrease the performance
of classification models in many cases. Therefore, some
authors propose data dimensionality reduction techniques to
face this challenge. The issue of novelty detection (detection
of untrained actions/gestures) has also been studied during
the past few years. This is an important topic in the area
of pattern recognition that is seldom studied. Often-times,
the classifiers perform well on the classification of trained
patterns, yielding good results on benchmarks. Despite this,
non-trained patterns may still be wrongly classified as one of
the trained classes.

Most research studies in EMG-based PR follow a discrete
recognition approach. This means that classification mod-
els are trained, tested and run with finite segments of data
that represent examples of each one of the pattern classes.
On the other hand, there are researchers that are modeling
the tension or extension of a muscle using continuous EMG
data, i.e., regression of a physical quantity. In this case, the
objective is not to label recurring patterns in the data, but to
use the measured force or extension of a muscle to control
the actuated joint’s angle or torque. The methods currently
used for regression of physical quantities from EMG data are
presented in the sub-section III-E.
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A. SIGNAL PROCESSING AND FEATURE SELECTION
The selection and extraction of features from real signals is
one of the most important steps in the development of a PR
system. This step may reduce undesirable parts of the signal
data and emphasize more relevant data. A thorough study of
several time domain and frequency domain features is pre-
sented in [39]. Strategies for feature selection and redundancy
avoidance are also presented. From the 37 time domain and
frequency domain features studied, the EMG features which
provided the best performance were: mean absolute value
(MAV), waveform length (WL), Willison amplitude (WA),
auto-regressive coefficients (AR) and two different modifi-
cations to the mean absolute value (MAV1 and MAV2). This
study states that EMG features based on frequency domain
are not well suited for EMG signal classification.

Park and Lee [18] implemented a PR system combining
several types of EMG features simultaneously. Although the
inclusion of additional features with poor separability may
degrade the performance of a PR algorithm, the authors tested
the integral absolute value, difference absolute mean value,
variance, auto-regressive (AR) model coefficients and linear
cepstrum coefficients. The Dempster-Shafer theory of evi-
dence was used as an evidence accumulation method applied
through a fuzzymapping function. A 4th order ARmodel was
applied to extract features from an EMG signal [19]. This
approach rejects all input EMG pattern classes not included
in the training data of the classifier, improving classification
performance. Earlier, Hu and Nenov [40] tested a similar
model which performs relatively well. Their implementation
relies on the extraction of features for each signal acquisition
channel on 400 ms windows at 2.5 kHz. Besides the AR
coefficients, which provide 4 features, they also build an
EMG histogram (HEMG) with 9 bins, totaling 13 features
per channel.

A novel technique that aims to remove user variability from
sEMG samples is presented in [41]. In this scenario, the same
system can correctly classify samples from new users without
retraining. This is achieved with a bilinear model to extract
user-independent features. The model can be rebuilt for a
new user after only one single motion example is performed,
which can be seen as a calibration step. The user-independent
signal features are split into windows of 128 timesteps and
incremented by 25 steps. The classifier used is a support
vector machine (SVM), which takes as input features the
channel-wise root mean square (RMS) value of the window’s
data. Their tests were performed with a 4 EMG channel
setup for 5 distinct hand gesture classes. To evaluate the
performance of the bilinear model, the authors use the leave-
one-subject-out approach, in which one subject’s data are
used as test data, and the remaining users’ data are used to
train the model. The classification accuracy on the test (new)
subjects is 73±13%, while the baseline performance, without
the bilinear model, for new users, is 54±11%.

In [20], three sets of features, (1) a set of time domain
(TD) features, (2) 6th order AR (6-AR) coefficients + RMS,

and (3) TD + 6-AR + RMS, resulted in 4, 7 and 11 fea-
tures per channel, respectively (228, 399 and 627 features,
in total). This dimensional space is relatively high for pattern
recognition, so two dimensionality reduction methods were
compared, principal component analysis (PCA) and uncorre-
lated linear discriminant analysis (ULDA). The best results
were achieved using ULDA reducing the number of features
to 6, which is the maximum number of linearly independent
feature dimensions for a 7-class problem. These results were
achieved using of windows of 256 ms with a step of 32 ms.
Wolf et al. [2] analyze the signal on 500ms windows, at a rate
of 10 Hz, resulting in an overlap of 400 ms of data between
consecutive windows. The features are the standard deviation
(SD) of the signal during eachwindow. The authors claim that
there may occur significant amplitude offsets over time on the
signal’s RMS, making this feature unsuitable for PR. On the
other hand, the SDT is correlated to the signal’s strength and
invariant in respect to amplitude offsets. An Inertial Measure-
ment Unit (IMU) is used to detect motion of the arm in respect
to the body and the surroundings. The window length used for
EMG signal analysis can vary significantly. For example, in a
recent study, the authors analyzed sEMG signals in windows
of 300 ms and 125 ms [42]. While on the 300 ms exper-
iments the authors used disjointed windows (no overlap),
the experiments with 125 ms windows had 90 ms overlaps.
The proposed classification model was based on boosted
classification with majority voting. The classifiers that were
trained with windows of 125 ms showed significantly lower
error rates. Another study combines a CyberGlove and a
tactile force measurement system (FingerTPS) with 16 EMG
channels, where the signal is analyzed in windows of 300 ms
with 50 ms steps [43]. This study had 10 classes of motions
and the attained accuracy was 92.75% using just the EMG
signal RMS.

Tkach et al. [32] propose electrode grids of 14 or 15 EMG
channels, depending on the subject’s type of amputation.
Electrode pairs are connected in the transverse and diagonal
directions. The signal was amplified 4800 times, sampled dig-
itally (16 bits) using a custom-built data acquisition (DAQ)
system at 1 kHz, high-pass filtered at 20 Hz and low-pass
filtered at 450 Hz using 2nd order Butterworth filters. The
signals are processed in 250 ms windows and with a step
of 50 ms. In a recent study, Ortiz-catalan et al. [44] extract
features from 200 ms windows, with 50 ms increments. Two
types of electrode arrangements were considered, one with
4 electrodes (for 11 motion classes) and another with 8 elec-
trodes (27 classes). The features selected for both configu-
rations were: MAV, number of zero crossings (ZC), slope
sign changes (SSC) and WL. Raw sEMG signals measured
with a frequency of 1 kHz were passed through a BPF with
bandwidth of 10-450 Hz to calculate wavelength features and
control a prosthetic hand for forearm amputees [45].

In [15], Riillo et al. propose the use of a supervised algo-
rithm based in Common Spatial Patterns (CSP) to improve
class separability. This technique is applied before feature
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FIGURE 3. The first three principal components of feature maps: for TD features on the left, and features processed with
the STFT-ranking technique, on the right, adopted from [46]. The features show smaller intra-class dispersion and better
separability.

extraction and improves the SNR of the sEMG recordings.
Spatial filters are implemented to maximize the variance of
one class while minimizing the variance of the remaining
classes by projecting data into a subspace.

A novel short-term Fourier transform ranking feature
(STFT-ranking) was recently introduced in [46]. Comparing
to the usual arrangement of TD and fractal domain (FD) fea-
tures, STFT-ranking reflects better the relationship between
EMG signals of different muscles. It also normalizes the fea-
tures to a fixed discrete range, with unit increments between
1 and the number of channels. The Fourier transform is used
to retrieve the frequency coefficients from windows of data.
The number of coefficients is typically high, so they are
combined into a lower number of bins and then ranked, being
attributed the score 1 to the highest combined coefficient.
Thus, the number of features obtained is the number of bins
per signal channel. Even then, the dimensionality may be
too large for a machine learning problem, in which case
further dimensionality reduction may be necessary, by means
of PCA or other techniques. Since STFT-ranking ranks the
contribution of individual EMG channels, it must be used
with more than one channel. An example of the improve-
ment of class separability with the STFT-ranking technique
is shown in Fig. 3.

Coelho and Lima [47] evaluated the use of fractal dimen-
sion methods to extract EMG features. Their experiments
involved the classification of 7 distinct limb motions using
8 EMG channels. The study of the impact of multiple
dynamic factors (forearm rotation angles and contraction
force levels) on pattern recognition is detailed in [48]. The
authors showed that time-domain power spectral descrip-
tors (TD-PSD) and discrete Fourier transform (DFT) fea-
tures allowed superior accuracy. Liu et al. [49] proposed an

invariant feature extraction (IFE) framework based on Fisher
kernel discriminant analysis (FDA). This method minimizes
intra-class deviation of features extracted in different days
and maximizes the inter-class dispersion (class separability).
These improvements may allow the training of classifiers
with better generalization capabilities.

There is no clear solution to sEMG channel and feature
selection for PR-based prostheses controllers. Deterministic
methods have been applied to select the feature-channel pairs
that present the best results in the classification of hand
postures at different arm positions [50]. Two methods are
proposed, namely distance-based feature selection (DFSS) to
determine a separability index and a correlation-based feature
selection (CFSS) method to measure the amount of mutual
information between features and classes. The two methods
demonstrated better classification accuracy than experiments
that used all of the available features. When compared to
DFSS, the CFSS method requires less feature-channel pairs
for the same performance.

The influence of sEMG data provided by anterior and
posterior muscles of a forearm in the control of finger flex-
ion movements is demonstrated in the context of prosthe-
sis development and control [51]. This study claims that
the posterior muscles are the main contributor for simple
finger flexion whereas the anterior muscles are the most
important for complex finger flexion. Simple flexions include
the movement of a single finger at a time, while complex
finger motions occur when two or more fingers move con-
currently. Nevertheless, it is suggested that some simple
and complex finger flexion motions can be identified from
either posterior muscles or anterior muscles, so there is data
source redundancy in the classification of both types of
motion.
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EMG signals may vary significantly depending on the user,
namely due to differences in body composition, muscle size
and electrode positioning. To solve this problem and obtain
a robust and simple multi-user interface, an automated user
calibration method is highly desirable. Cannan and Hu try to
partially solve this problem by establishing a linear relation-
ship between the Maximum Voluntary Contraction (MVC)
and the upper forearm circumference [52]. MVC is defined
as the maximum ability to contract muscles, i.e., the maxi-
mum attainable EMG signal. The MVC allows the definition
of an activation threshold that has better performance than
the RMS or MAV. This threshold is then used to normalize
EMG signals across different subjects and improve motion
classification accuracy. Their experiments used 4 Biometrics
differential EMG electrodes and DAQ system, a Dynamome-
ter hand grip strength sensor, and a custom-built extensometer
to measure the forearm’s perimeter. The hand grip strength
measures the force the subjects exert when closing the hand,
which is proportional to the force being exerted by the fore-
arm’s muscles. The extensometer is composed of a load cell
whose ends are connected by an elastic band worn tightly
around the forearm. Hooke’s law allows the determination of
the perimeter of the cross-section of the forearm as a function
of the force measured by the load cell. The authors showed
that EMG signal thresholds determined using the proposed
method (as a function of forearm circumference) perform
better than fixed thresholds calculated from a small group
of subjects. In other words, the circumference is a better
predictor of the maximum EMG signal that new subjects can
generate than the average maximum signal estimated from a
subset of subjects. The study also showed that the body mass
index (BMI) of an individual changes the MVC value, since
the BMI is related to the thickness of the subcutaneous tissue,
which in turn has an effect on the muscle-electrode interface
impedance..

B. DIMENSIONALITY REDUCTION
An efficient data dimensionality reduction technique reduces
intra-class variability while increasing inter-class distance,
thus simplifying the classification task. Class separabil-
ity measures the distance between data points of different
classes [47]. Good class separability indicates that data points
of a class have a distance from points of other classes greater
than the distance between points of the original class. Thorn-
ton’s separability index (SI) has been proposed for the design
of machine learning systems [53].

PCA is a commonly used linear dimensionality reduction
technique. It is an unsupervised method which is invariant
in respect to the data points’ classes [15]. PCA performs an
orthogonal linear transformation that projects the data onto
a new lower-dimensional space with decreased dimension
correlation. The resulting eigenvectors (or principal vectors)
are the basis of the new space. The eigenvalues determine the
variance of the data in the direction of the respective eigen-
vectors. Low eigenvalues mean that the data have reduced
variance on that dimension, so the dimensions with the lowest

eigenvalues can be truncated without losing a significant
amount of information. The importance of having relevant
embedded muscle activity features in a low-dimensional
space is highlighted in [54]. This study shows how PCA can
be used as an unsupervised feature extraction method and
illustrates the efficacy of this method in capturing features
from sEMG signals.

Naik and Nguyen [55] studied the performance of the Non-
negativeMatrix Factorization (NMF), another dimensionality
reduction method. NMF reduces dimensionality by approx-
imately factorizing the source data into two matrices [56].
The factorization is based on the minimization of a cost
function that is inversely proportional to the quality of the
approximation. If there is latent structure in the source data,
the approximation will be effective in lower dimensional
spaces. Some studies have found that NMF can be used for the
determination of muscle synergies on EMG signals [8]. NMF
establishes a constraint of non-negative data only, which
is not valid for raw EMG signals. Nevertheless, the inver-
sion of the negative values of EMG signals is sufficient to
obtain good results in EMG signal decomposition. Another
approach is the application of NMF to the signal’s RMS.
Other methods for dimensionality reduction are ULDA [20],
the locality preserving projections (LPP) and neighborhood
preserving embedding (NPE). A method based on discrimi-
nant analysis (OFNDA) is proposed in [57].

From a clinical point of view, sEMG is considered to be
a good data source for the control of multifunctional upper
limb prostheses, due to its noninvasive nature and comfort
of use. However, sEMG generates redundant data which may
be detrimental to the performance of prostheses control sys-
tems. In order to extract significant information from sEMG
raw data and successfully recognize the motions an amputee
intends to do, a promising approach based on independent
component analysis (ICA) is proposed in [58]. Achieving a
classification accuracy above 95% for a library of 11 gestures,
this approach encourages further developments in real-time
prosthetic applications.

Finally, it is important to reinforce that a wrong application
of a data dimensionality reduction method may lead to the
loss of information that may introduce new failure modes on
the classification task.

C. CLASSIFICATION
Human action recognition is achievable by applying PR on
EMG signals. Static and dynamic hand and arm gesture
recognition is an active research topic, existing several dif-
ferent methods for its implementation. Some researchers use
PR to recognize motion intention, such as the contraction
of a muscle [21], [32]. Another important classification
problem is novelty detection. In this case, the recognition
system must also recognize when a pattern does not fit any
of the trained classes, as proposed in [19]. Novelty detec-
tion is implemented prior to the pattern classification with
a one-class classifier called support vector data description
(SVDD). The authors alsomention that there are several other
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promising methods for this type of classification: one-class
SVM, the single-class minimax probability machine (MPM)
and the kernel PCA (KPCA) method. Despite being super-
vised classifiers, they only have to be trained with the target
patterns. This is true for most of the one-class classifiers.

In [59], Alkan and Günay compare the classification accu-
racy of discriminant analysis methods against a SVM. The
only feature retrieved from the EMG data was the MAV and
the number of classes considered was 4 (upper-arm move-
ments). The achieved accuracy was better for the SVM classi-
fier (99%) using 10-fold cross validation, while discriminant
analysis models achieved accuracies in the range between
96% and 98%.

A self-recovering PR system that relies on LDA for clas-
sification and allows online retraining using an optimized
LDA-based retraining algorithm is presented in [60]. This
system is designed to detect and overcome disturbances on
the EMG signal. It is able to retrain the classifier for 3 classes
and 4 channels in 0.55 ms, which does not affect real-time
usage. The system reaches a recovery rate of 93.5%, which
means that it substantially reduced the number of errors after
retraining. It is unknown if the algorithm is as efficient for a
larger number of classes, or if the retraining time increases
exponentially with the number of classes.

A classification system of finger movements for dexterous
hand prosthesis control using sEMG is presented in [61].
The system was tested on both intact-limbed subjects and
transradial amputees. The effect of the number of electrode
channels (NCh) on the classification accuracy was also stud-
ied. It was concluded that the accuracy increases with a
higherNCh. Nevertheless, 6 channels allowed an accuracy
of 98% over 10 intact-limbed subjects on 15 classes (class-
channel ratio of 2.5). They used 6th order AR coefficients
and TD features (RMS, waveform length, number of zero
crossings, integral absolute value and slope sign changes),
a total of 11 features per channel. Both PCA and orthogonal
fuzzy neighborhood discriminant analysis (OFNDA) were
tested for dimensionality reduction. OFNDA presented the
best results, while also being suitable for applications with
a large number of pattern classes. The reported classification
accuracy was achieved using LDA. A recent study proposes
the classification of EMG signals using multi-scale prin-
cipal component analysis (MSPCA) for denoising, discrete
wavelet transform (DWT) for feature extraction and decision
tree algorithms for classification [62]. It is reported that
the best performance (96.67% classification accuracy) was
achieved with a combination ofDWT and a random forest
classifier.

A PR system was applied to discriminate 6 hand grasp
patterns and one rest pattern (7 classes) in patients with spinal
injuries (degraded motor control of the upper limbs) [20].
The authors propose a data segmentation scheme based on
the amplitude of the EMG signals to determine the onset
and end of active segments. Two different classifiers were
studied, LDA and k-nearest neighbors (KNN). The majority
vote was used as a post-processing method to make the final

classification decision. There are a total of 17 deciders (cen-
tred window – 8 time steps before, 8 after, 1 in between), each
using data with time offsets of 32ms, which in turnmeans that
there is a decision delay of 272 ms in respect to the newest
time step. The achieved accuracy was 97.20±4.0% for a sin-
gle model, and the majority vote increased it to 97.93±3.3%.
The results are influenced the most by the feature set and less
significantly by the classification model itself.

A new classifier for sEMG signals, boosted random forests
(MCLPBoost), allows the detection of novel patterns [42].
In this work, the data were obtained from 6 subjects, from
6 EMG channels, which repeated each class 42 times. The
chosen features were all TD features: MAV, ZC, SSC, WL.
The proposed classifier achieved a RR of 92% but the novelty
detection accuracy was just 20%. However, the authors pro-
pose the use of a threshold on the sample score provided by
the classifier, where samples that do not reach the threshold
are considered to be novel. A low threshold prevents the
detection of novel classes and higher thresholds cause more
trained patterns to be classified as novelty. The authors tuned
the threshold so that there is a novel detection accuracy
of 80%, but concurrently the RR in samples of trained classes
decreased to 80%. Wavelengths from sEMG signals of fore-
arm amputees were used as input to a regression artificial neu-
ral network (ANN) that estimated the hand shape (joint angles
of each finger, wrist pronation/supination angle and palmar
flexion/dorsiflexion) in order to control a virtual prosthesis
hand, Fig. 4, [45]. Experimental results for a motion set with
4 pattern classes showed an average normalized joint angle
RMS error of 0.164.

An interesting approach relies on the overlapped window-
ing technique, with a length of 300 ms, and 75 ms of delay
betweenwindows [15]. EMG features were extracted for each
channel and window. Four time-domain features were tested:
mean (M), RMS, WA and SSC. PCA was used to reduce
the dimensionality of the feature vector and the classifier
employed was an ANNwith 10 hidden nodes (5 classes). The
highest accuracy was achieved using a feature combination of
M, RMS andWA, achieving an accuracy of 88.85%± 7.19%
on 20 different subjects.

In a recent study, EMG signals were used to clas-
sify 10 classes of motion intention using three different
approaches: Fuzzy Gaussian Mixture Models (FGMM),
Gaussian Mixture Models (GMM) and SVM [43]. The study
describes thoroughly the algorithm used during the training
process. The acquisition setup is composed by 16 EMG
electrodes carefully placed over a predefined set of muscles,
while a single feature is extracted from each channel (RMS).
This setup achieved a maximum overall RR of 92.75%
with a distance-based FGMM. The GMM and the SVM
reached average recognition rates of 87.25% and 88.13%,
respectively.

In a different approach, TD and AR features calculated
on windows of 250 ms were extracted from 14 to 15 EMG
channels [32]. The TD features were MAV, ZC, SSC,
WL and 6th order AR coefficients, a total of 10 features
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FIGURE 4. Framework for an estimator of the finger and wrist joint angles, adopted from [45].

per channel. The chosen classifier was LDA and no dimen-
sionality reduction technique is mentioned. The number of
motion classes can be as high as 29, including 8 single
joint movements (elbow flexion/extension, wrist flexion/
extension, wrist pronation/supination, hand open/close),
20 combinations of two of these movements and a class
without any motion. Their classification error was relatively
low when using only 9 classes (1.3%). However, increasing
the number of classes to 13 caused the error percentage to
increase to 17.1%. The authors also implemented real-time
sets of tests called Target Achievement Control (TAC). These
tests consisted on moving a virtual limb from a nominal
position to a target posture and maintaining it for 1 second.
To evaluate the controllability in the TAC test, 3 metrics
were used for each classifier: completion rate (percentage
of total trials completed within 5 s), completion time and
length of movement error (length of movement beyond the
minimum required distance). The average length error was
27%, the average completion rate was 96% and the average
completion time was 2 s.

The performance of 4 classification models, namely LDA,
Multi-Layer Perceptron (MLP), Self-Organized Map (SOM,
unsupervised ANN) and Regulatory Feedback Networks
(RFN, classification based on negative feedback) were com-
pared [44]. Furthermore, the authors explored the possibility
of multi-class classification, which means that a given pattern
may belong to multiple classes. Six different classification
setups were tested: Single, All Movements as Individual
(AMI), Ago/Antagonist-Mixed (AAM), One-vs-All (OVA),
One-vs-One (OVO) and All-And-One (AAO). Generally,
they differ in the number of classifiers used, the strategy for
classification and class definition (requiring mixed classes to
be defined, or multi-class classification). For the 11 single-
class patterns, which only have a single target class each,
the offline accuracy was the highest for the LDA classi-
fier using the OVO structure. The OVO structure relies on
a multitude of classifiers that classify the pattern between
two classes. The final output is set by majority voting on
the combination of all classifiers. The second best result
was obtained with the SOM-OVO structure, with 94.5%

accuracy. Considering the problem with 27 pattern classes,
which include multi-class samples, the highest accuracy
achieved was 94.2% using the MLP-AMI structure. It was
closely followed by a single SOM and LDA-AMI with a
RR of 93.8% and 93.7%, respectively. The AMI structure
uses a single classifier and requires the mixed classes to be
considered separate classes, therefore increasing the number
of outputs of the classifier.

The performance of a dimensionality reduction technique,
the Non-negative Matrix Factorization (NMF), is presented
in [55]. It was used to data mine the EMG signals and perform
unsupervised learning using the RMS and the 4th order AR
coefficients as features. The classifier used was an ANN.
This method was studied on an existing dataset1 that contains
data from 2 EMG channels (extensor and flexor muscles)
for 10 different finger movements (5 simple and 5 complex,
involving one or more fingers moving). For the 5 single
finger flexion classes, the attained classification accuracywas
93.92±0.63% (inter-subject). The 5 complex finger flexions
were decoded accurately up to 87.58±0.36% of the samples.

Riillo et al. [15] presented a comparative study between
supervised and unsupervised data pre-processing on healthy
subjects and transradial amputees. The unsupervised PCA
approach was compared to the common spatial pattern (CSP)
supervised methodology. The PCs are calculated for the fea-
ture vectors, while the CSP methodology is used before fea-
ture extraction. The average accuracy for the PCA approach
was 88.81%±6.58% using an ANN classifier and RMS-WA
features, whereas the accuracy for the CSP strategy was
slightly better, with 89.35%±6.16% using an ANN classifier,
and M-RMS-WA as features. These results are valid for
a set of 5 classes using 6 EMG channels. The amputee’s
classification accuracies were also relatively high, 92.04%
for PCA and 93.4% for CSP. Seethanjali and Ray found
that for their setup, simple logistic regression (SLR) fared
better than other classifiers, such as decision trees, logistic
model trees (LMT), ANNs, SVMs or LDA [63]. TD fea-
tures allowed to achieve an accuracy of 93% for 6 classes.

1http://www.rami-khushaba.com/electromyogram-emg-repository.html
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A spiking neural network (SNN) achieved an accuracy
of 95.3% for 6 hand motions using 8 electrodes on the fore-
arm [64]. For the development of the SNN, the study proposes
the use of the NeuCube environment. The authors demon-
strated that frequency-domain features do not represent the
classes properly.

Stango et al. [23] studied the effect on recognition accuracy
of problems such as electrode shift and channel loss. The
classifier used was a SVM with a linear kernel with features
retrieved from a variogram function. This resulted in 96%
accuracy for 9 classes of gestures. When a longitudinal shift
was simulated, it decreased to about 90%. A transversal shift
caused a reduction to 80% without retraining. This technique
is also accurate even when a large proportion of the EMG
channels is omitted. Another study in which missing data are
considered is presented in [65]. The authors propose the use
of an extended full-dimensional GMM.

Rosati et al. [66] presented a hierarchical clustering-based
method to group strides and by this way to characterize
human gait from EMG data. Results show that the variabil-
ity of the pattern onset/end timing is significantly reduced
after clustering. Yamanoi et al. [67] proposed a myoelec-
tric hand that estimates hand posture (8 grip postures) and
grip force simultaneously. The ability to simultaneously esti-
mate parameters is important for a number of EMG-based
applications. EMG-based classification accuracy is critical
for controlling forearm prosthetic devices. The effect of
the temporal and spatial information was studied in the
classification accuracy of 7 hand gestures recorded from
partial-hand and trans-radial amputee volunteers, as well as
able-bodied volunteers [68]. The authors concluded that the
classification accuracy is significantly impacted by the num-
ber of electrodes and the signal processing window length.
The optimal window size was also found to be independent
of the number of electrodes used.

Table 2 summarizes the most recent studies in the field of
EMG-based pattern recognition, showing for each study the
number of classes considered, the number of EMG channels,
the features extracted from the signals, the chosen classifier
and the attained recognition accuracy.

D. NOVELTY DETECTION
The problem of novelty detection is important in order to
improve the robustness of pattern recognition systems. Even
if a system presents a relatively high accuracy in the clas-
sification of predetermined (trained) classes, it is still likely
to miss-classify novel classes as one of the trained classes.
This is a seldom addressed failure mode that could lead to
unexpected results and potentially endanger users and their
environment.

Liu and Huang [19] propose the use of an ensemble of
one-class (OVA) SVDD classifiers that demonstrates a high
level of generalization. If a new sample does not fall into
any of the SVDD hyper-spheres, it is considered an outlier,
a novelty. Else, it is considered a targeted pattern and can be
further processed. However, this ensemble does not replace

a multi-class classifier because the SVDD hyper-spheres may
intersect. In this case, the same pattern is classified as mul-
tiple classes, so an extra step must be taken to determine the
final classification output.

A different solution using modified boosted Random
Forests (MCLPBoost) was studied to solve the problem of
novelty detection [42]. The effect of arm movements on
sEMG pattern recognition for hand and wrist motions was
studied in [74]. Results showed that arm movements signifi-
cantly impact classification performance when the classifier
is trained in one arm condition and tested in another.

E. REGRESSION
Regression of EMG data is the process of predicting the
motion of a biological joint using the sEMG signals from the
muscles actuating that joint. sEMG signals may be affected
by physiological and non-physiological factors. The accuracy
of force estimation using sEMG is affected by changes in
joint angle and contraction type, among others [75], [76].
An actual example of this effect is shown in [77]. Nine
electrodes are placed over specific arm muscles (the most
relevant for the actuation of the arm) and the movements are
mapped to the EMG states using a linear model trained by an
iterative prediction-error minimization algorithm.

Fleischer and Hommel [78] developed a torque-assistive
knee exoskeleton in which the operator’s intended torque
is decoded from EMG signals. The control system requires
models of the operator’s body and exoskeleton, which use
signals obtained from various sensors, thus requiring consid-
erable calibration. A comparison between the ground truth
torque and the produced torque on a stair climbing exercise
can be seen on Fig. 5.

FIGURE 5. Torque produced (black) by a lower-limb exoskeleton system,
adopted from [78]. The plot shows the operator’s intended torque (green)
and the knee angle (red), considering full torque support.

Haddad and Mirka [79] studied the effects of muscle
fatigue on the EMG-force relationships. The authors present
an algorithm to adjust the variable gain factor of the load
estimator, as a function of the median frequency’s negative
shift measured on short term fatigue. Their work reduced the
error caused by an invariant gain factor from 21.4% to 12.9%.

Hashemi et al. [80] use angle-based EMG amplitude cal-
ibration and parallel cascade identification (PCI) modeling
to predict the nonlinear and dynamic relationship between
EMG signals and force in dynamic contractions of the
biceps and triceps brachii muscles. The authors achieved
a minimum %RMSE of 8.3% for concentric contractions,
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TABLE 2. Pattern recognition results using machine learning techniques in EMG data.

10.3% for eccentric contractions and 33.3% for fully dynamic
contractions.

In order to estimate the force generated by muscles,
Li et al. [21] use a high-pass filter to removemost of the signal
components in the low-frequency range, rectify the signal and
calculate the signal envelope. Considering further processing
steps, the methodology achieved a good estimation of the
resulting force on the joint. An alternative method based
on pattern classification uses sliding windows of 100 time
steps (10 Hz) with 2 features per channel (MAV and WL).

The minimum %RMSE obtained was 6.9% on the biceps
brachii. The authors also found that for a natural control of
their exoskeleton application, the delay between the onset of
the muscle contraction and the corresponding motion of the
device must not exceed 300 ms. Another study showed that a
non-parametric machine learning model obtained by Gaus-
sian Process Regression (GPR) modeled the elbow torque
better than a pneumatic artificial muscle (PAM) model [81].
EMG signals were obtained from the biceps and triceps.
Recently, Valentini et al. [82] used a GMM to estimate
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the angle of a human joint with wavelet transform features
obtained from sEMG signals. Their system achieved real-
time performance with a processing time below 3 ms. The
same problem has been tackled with recurrent neural net-
works (RNN), namely a nonlinear auto-regressive exogenous
(NARX) model [83]. In [84], a time-delay neural network
(TDNN) was used to predict the elbow’s torque in dynamic
conditions using only sEMG data. The test data showed a root
mean square error of 1.0 Nm in a range of around±14.0 Nm.
A signal normalization approach proposed by Han et al.

demonstrated a significant reduction of the dependence on
varying external loads [85]. Their system estimated joint
movement continuously from EMG signals using a state-
space Hill-based muscle model closed-loop approach. Other
authors studied the effect of varying loads on joint angle
estimation and proposed different alternatives to overcome
the classification problems those loads may bring [86].

In [87], Krasoulis et al. propose a method to obtain finger
movement for SPC using linear and kernel ridge regres-
sion (KRR) from sEMG and accelerometer data. The results
showed that the correlation was R2 = 0.79 for KRR. The
authors also found that non-linear regression may outper-
form linear regression during within-movement generaliza-
tion. Their performance is comparable when generalizing to
novel movements.

F. MULTI-MODAL SENSING
Ju and Liu [43] use 3 types of sensors to capture simultane-
ously the finger angle trajectories, the hand contact forces,
and the forearm EMG signals. They establish correlations
between the sensors’ signals by using Empirical Copula.
Chang et al. [88] propose the combination of EMG sensors
with an IMU to improve the accuracy of hand gesture recog-
nition. The authors report a RR of 97.5% for 6 classes of
gestures which were performed by 10 subjects. A SVM with
a linear kernel provided the best results.

A device with a wrist-worn motion sensor (IMU) and
4 sEMG sensors achieved a RR of 95.9% for 40 distinct signs
of the American Sign Language with an SVM classification
model [89]. Nevertheless, most of the features were obtained
from the inertial sensors, which explains the relatively high
RR considering the large amount of distinct gestures.

IV. APPLICATIONS
EMG signals have been used in different applications, namely
for rehabilitation, prostheses control, medical diagnosis and
for the most diverse human-machine interaction approaches.
However, most of these applications are confined to con-
trolled laboratory environments and do not have yet the
required level of reliability for deployment in the real world.
Research in EMG-based devices will proceed in the coming
years towards the improvement of EMG pattern classification
in multi-user systems and reduction of the effect of real-
world issues, such as electrode shift and presence of novel
patterns. Additionally, prosthesis control must be extended
to more complex tasks in order to reduce the prosthesis

rejection rates and allow the intuitive control of machines.
Furthermore, the the combination of EMG data with other
sensors appears to improve substantially the robustness of
classification systems.

Farina et al. [8] have previously presented a thorough
review on upper-limb prostheses, including previously stud-
ied control strategies and the challenges for future stud-
ies. They also present a list of ideal characteristics of
a EMG-based control system for upper limb prostheses.
Although sEMG control has been studied for over 60 years,
so far there has not been a significant evolution on clinical
and commercial upper limb prostheses. Current systems are
robust, but they are not very natural nor practical, so they are
often abandoned by their users. Today’s control techniques
rely on direct control (DC), in which the user has to elevate
the EMG signal above a predetermined threshold to generate
a command (controlling a single DOF in one direction). If a
patient intends to control multiple DOFs, the DOF combina-
tion must have been predefined, or the patient has to select
and control each DOF individually. Some researchers are cur-
rently exploring the use of pattern recognition for the simulta-
neous control of several DOFs, as described in section III-C.

FIGURE 6. Electrode positioning in forearm amputee, adopted from [45].

An architecture for the control of a UB Hand IV device is
presented in [90]. Tele-operation is performed using 8 sEMG
channels. Performance was measured on grasping tasks and
a high success rate was achieved. A prosthetic hand is con-
trolled by forearm amputees using regression models for the
hand joints’ angles (fingers, wrist and palmar angles) from
sEMG data [45]. The system was successfully tested by a
right forearm amputee using a set of 4 hand patterns, Fig. 6.
Recently, EMG has been used to predict the intended move-
ments of an upper limb amputee for prosthesis control [91].
The proposed methodology demonstrated to be robust to the
negative effect of untrained actions such as limb position
changes.
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FIGURE 7. Signal processing chain including blanking, adopted from [92].

Lower-limb prosthesis control is not studied as often
as upper-limb protheses. Nevertheless, a reference study
presents a lower-limb DAQ system in which the EMG signal
is used to predict gait mode change of a leg [94].

In the conventional DC method for prostheses, each EMG
signal is analyzed independently and concurrently to match
the number of DOFs to be controlled. In this scenario, each
EMG channel is used as the unique control signal for each
actuator and the range of actuation is controlled proportion-
ally using the amplitude or RMS of the EMG signal [8]. This
means that only one function can be used at a time. However,
it is possible to create a control system in which multiple
functions are directly controlled, simultaneously and propor-
tionally (SPC), without the need for a switching function.
This type of control may be improved by the use of a Bayesian
filter on sEMG data [95].

Novel control methods based on PR assume that when
a given subject tries to perform a certain task, there is a
consistent EMG pattern in a group of electrodes. Using these
methods, the subject is not required to switch between DOFs
in order to perform a task, as necessary in DC systems.
Nevertheless, this type of approach does not allow the simul-
taneous control of more than one motion, a characteristic of
natural movements. Research in PR shows high classification
accuracy for large sets of motions, but there are still no com-
mercial/clinical systems exploiting PR-based control. Even in
the presence of high accuracy, a small amount of repeatable
errors may be unacceptable in some tasks. A classification
error may lead to an unwanted motion that could compro-
mise the entire functionality of the system. Furthermore, the
control is still sequential, controlling only one type of motion
at a time.

Based on PR, Ortiz-catalan et al. [44] have been trying to
interpret combined motions as new classes. This may become
unfeasible as the number of elementary motions increases,
since the number of classes would grow exponentially. Alter-
natively, there have been approaches based on regression
control of joint kinematics with EMG. This requiresmodeling
the relationships between forces and kinematics, which are
difficult to determine. The coefficient of determination has
been ascertained to be in the range of 70% to 90%, when
comparing ANNs, linear regression and kernel methods.
Unsupervised methods can also provide a solution to this
problem, such as signal factorization and NMF [55]. The
motion accuracy in control tests between different approaches
have been shown to be similar, since the users are often
capable of learning how to adapt their muscle contractions
to improve motion RR.

Scheme et al. [96] introduced two new proportional control
algorithms based on PR control. In their work, the classifier
output is used to determine movement direction, while the
proportional control (PC) gain is computed with other met-
rics. The traditional approach is based on mapping linearly
the EMG amplitude (using the MAV with a class-specific
gain) to the force or speed to be generated by the actuators.
If multiple sensors are used, a summation and normalization
of the MAV of all channels is performed, with equal weights.
Their first approach takes into account the intra-class and
intra-channel averages. Also, the PC-EMG gain is square-
mapped, so that the PC has better resolution at lower speeds.
The other approach is expressed in terms of a percentage of
the maximum contraction and it is mapped cubically. In either
case, the data needed to create the PC model are limited to a
small training data set. The authors concluded that this last
method presented better results in terms of usability for both
able bodied subjects and amputees when combined with a PR
system.

Ison et al. [35] developed a 4-DOF EMG SPC control
interface for a 7-DOF manipulator using a high density array
of sEMG electrodes. They also circumvented the necessity of
narrow electrode placement constraints with signal decom-
position inspired by natural muscle synergies. Succinctly,
muscle synergies are visible when 2 activation signals control
a single joint DOF, each one in a different direction. A for-
mulation proposing the use of task-specific muscle synergy
activation coefficients is shown in [97]. The coefficients are
modeled as the latent system state and estimated using a con-
strained Kalman filter. The accuracy in task discrimination
is around 90% and it is computationally efficient (decision
reached in under 3 ms).

In order to restore the performance of pattern recogni-
tion in prosthesis control when EMG signals are corrupted
by electrical stimulation artifacts (due to electrocutaneous
stimulation feedback provided to the user by the prosthetic
system), researchers investigated artifact blanking with three
data segmentation approaches, following the signal process-
ing chain displayed in Fig. 7. Basically, the blanking block
in Fig. 7 removes stimulation segments from the raw signal,
so that the samples used for feature extraction are free of sig-
nal interference. The results demonstrated that the proposed
artifact blanking method can be used as a practical solution
to eliminate the negative influence of the stimulation artifact
on EMG pattern classification [92].

Neuromuscular diseases can be diagnosed using EMG
signals [98]. This is achieved by the decomposition of the
signals into frequency sub-bands using the discrete wavelet
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transform (DWT), and classified using a SVM model whose
parameters were determined by particle swarm optimization
(PSO). The system yielded an overall accuracy of 97.41% on
1200 signal sets. Research has been carried out to improve
the motor control of patients who have had central nervous
system (CNS) injuries that caused degraded CNS-Motor sig-
nals [99]. Several disorders of the muscular system may
be diagnosed using EMG signals, such as dystonic mus-
cles [100]. PR on EMG signals has also been recently used
to improve electro-larynx performance on patients who lost
their voice-box, usually due to larynx cancer. Using 2 EMG
channels positioned over neck muscles, researchers tried to
decode the intended voice sound patterns, using either SVM
PR or SVM regression on 4 distinct classes. The regres-
sion achieved 33% lower RMSE than the classification,
but subjectively, the classification provides a more accurate
representation of the patient’s intention. The accuracy rate
achieved was 78.05±6.3% [101].

FIGURE 8. Diagram of a data acquisition system used to estimate the
joint stiffness to be replicated by a robot during a tele-operation session,
adopted from [93].

In an interesting study, the stiffness command to a robot
was derived in real-time from the measurement of 8 EMG
channels from an operator’s arm, Fig. 8, [93].

V. CONCLUSION
Although current research on EMG-based control is targeted
mostly for upper-limb prostheses through the application
of EMG sensors on the forearm, there is a need for the
development of sophisticated EMG-based human-machine
interfaces. Robust PR on the forearm’s EMG signals may
create a strong alternative to hand gesture recognition from
vision systems or data gloves. The current solutions are

either too restrictive and unreliable (vision) or cumbrous to
use (gloves). A forearm band with dry sEMG and inertial
sensors would be a good solution for discrete hand gesture
classification.

The current efforts on EMG PR development are targeted
at increasing the reliability of the classification by antici-
pating and correcting sources of EMG disturbance, such as
muscle fatigue, varying skin impedance, electrode shift and
liftoff. The solutions studied are based on (1) the use of
HD-EMG monopole electrode arrays to obtain topographi-
cal maps of muscle activity, (2) further signal conditioning,
(3) and increased robustness of the classification models.
The use of electrode arrays greatly increases the number of
signal channels. In turn, this requires the use of dimension-
ality reduction strategies and smart feature selection (or deep
learning), since high-dimensional input features requiremuch
higher computation power to train and use classifiers, thus
undesirably increasing the time between signal acquisition
and classification. On the other hand, these high-dimensional
spaces have the potential to be more robust to imprecise
electrode placement and electrode shift. Some studies have
showed their potential to detect muscle activation synergies.

Classification accuracy is still very dependent on the
feature-classifier combination. The features selected are very
often time-domain features andARmodel coefficients. Novel
features include variogram-based and STFT features. The
classifier models most commonly used are LDA and its vari-
ations, SVM and ANN in several forms. Joint angle/torque
regression based onmachine learning is being developedwith
RNN, PCI, GPR, GMM and KRR. All these methods are
being used on single muscle-actuation with relative success
and will possibly be used in the upcoming HMI interfaces.

An important element that is lacking discussion in most
studies in this domain is the reproducibility of the presented
experiments. The data sets are seldom published, making it
difficult to compare different methodologies. Furthermore,
it is challenging for different researchers to reproduce exactly
the same data acquisition setup, due to the limited availability
of the instrumentation (many researchers use custom-build
sensors) and high sensibility of the EMG sensors in respect
to the electrode placement conditions. We believe that in the
future, setups with dry electrodes will prevail because of their
ease of use. Furthermore, larger data sets should be built
around reproducibility.
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