
Improving Novelty Detection with Generative Adversarial

Networks on Hand Gesture Data

Miguel Simão∗, Pedro Neto†and Olivier Gibaru‡

November 5, 2018

Abstract

We propose a novel way of solving the issue of clas-
sification of out-of-vocabulary gestures using Arti-
ficial Neural Networks (ANNs) trained in the Gen-
erative Adversarial Network (GAN) framework. A
generative model augments the data set in an online
fashion with new samples and stochastic target vec-
tors, while a discriminative model determines the
class of the samples. The approach was evaluated
on the UC2017 SG and UC2018 DualMyo data sets.
The generative models’ performance was measured
with a distance metric between generated and real
samples. The discriminative models were evaluated
by their accuracy on trained and novel classes. In
terms of sample generation quality, the GAN is sig-
nificantly better than a random distribution (noise)
in mean distance, for all classes. In the classifica-
tion tests, the baseline neural network was not ca-
pable of identifying untrained gestures. When the
proposed methodology was implemented, we found
that there is a trade-off between the detection of
trained and untrained gestures, with some trained
samples being mistaken as novelty. Nevertheless, a
novelty detection accuracy of 95.4% or 90.2% (de-
pending on the data set) was achieved with just 5%
loss of accuracy on trained classes.

Index terms— Collaborative Robotics, Semi-
Supervised Learning, Generative Adversarial Net-
works, Novelty Detection
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1 Introduction

Often-times the performance of a classifier trained
offline on a data set is not indicative of the on-
line performance. This may happen due to missing
elements on the data processing pipeline, such as
proper data scaling. However, the major issue is
the limited scope of a data set, when compared to
the real problem. Independently of the resources
available, a data set can not include a large por-
tion of real-world scenarios. In those cases, there
is no way of confidently predicting the performance
of a classifier.

In a gesture recognition data set, there are train-
ing patterns of a predefined number of gesture
classes. It is also possible to include gesture pat-
terns that do not match any of the classes but
that can occur in real-world conditions [1]. These
are known as untrained gestures, novelties, non-
gestures, or others, i.e., gestures that do not belong
to the predefined classes. However, the diversity of
non-gestures is almost infinite, or at least, much
greater than that of the predefined gestures.

Non-gestures appear in real-world conditions on
every type of interaction, particularly in human-
human and human-machine interaction. They may
occur due to, albeit not limited to the following
reasons:

1. The user is uneducated in respect to the
human-machine interface and performs out of
vocabulary gestures;

2. The user is distracted and is moving in a way
that does not make sense in the context of the
interface, e.g., talking to somebody else;

3. The user is forced to move in response to other
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elements in the surroundings, e.g., moving ma-
chines or falling objects;

4. The user is from the end of an interaction to
the start of the next, i.e., Movement Epenthe-
sis (ME).

The naive way to exclude non-gestures is to set
a threshold to the output probability of a classifier:

class =

{
τ, p(yτ |z) ≥ threshold

none, p(yτ |z) < threshold
(1)

where y is the classifier’s output given the feature
vector z, ad p the probability distribution over the
problem’s classes. We have previously shown that
for the most widely used classifier – ANNs –, the
output probability is not a good measure of classi-
fication certainty [2]. This means that many cor-
rect classifications may have low probabilities and
incorrect ones have high likelihood, as predicted
by the ANN. If we were to set a threshold on
the class probability using 1, many good classifi-
cations would be discarded, while an equal propor-
tion of bad classifications would pass. Therefore,
the threshold method is not effective for its pur-
pose.

It is possible to exclude non-gestures and bad
classification using context clues, such as limiting
the quantity of possible outputs. However, this is
a limited approach and we are interested in explor-
ing new methodologies that may help a classifier
discriminate non-gestures.

A non-gesture is an ”abnormal” occurrence for
the classification model, which is trained with a
restricted number of classes. While non-gestures
could belong to an extra class containing all of the
possible non-gestures, training it is a challenge be-
cause of the lack of examples. Because of the large
gesture domain, it is unfeasible to get data samples
from every possible non-gesture. This problem is
seldom addressed and most data sets do not include
such patterns.

The problem of detecting ”abnormal” patterns
from a predefined number of gesture classes is gen-
erally known in the literature as Novelty Detec-
tion (ND). In this type of problem, the prede-
fined classes have considerably more training ex-
amples, while the ”abnormal” patterns are under-
represented. In [3], the authors concluded that cur-

rently, there is no optimal solution for the ND prob-
lem because if depends on the type of data and the
application domain. Distance methods such as k-
NN have been shown to be superior, but their com-
putational efficiency decreases with data set size,
therefore making them unsuited for larger data sets
and real-time applications [4].

We propose the use of a semi-supervised method-
ology which uses the labelled samples of a data
set and generated unlabelled samples which cor-
respond to either gestures or non-gestures. This is
an approach that is currently used in deep learning
where very large data sets are required but labels
are not always available [5, 6]. This is a method-
ology that has been used successfully on data sets
for image recognition. In this chapter, we present
the results of its application to hand-gesture recog-
nition with GANs.

1.1 Generative Adversarial Net-
works

The name GAN describes a framework for the
training of generative neural networks that was
introduced by Goodfellow et al. in [7]. In this
framework, there are two competing nets which are
trained simultaneously: a generative net G and a
discriminative net D. The objective of the discrimi-
nator D is calculating the probability that a sample
came from the real data set rather than from the
generator G. On the other hand, G is trained to
produce samples that maximize the probability of
D classifying them as real. D and G have com-
peting objectives and should normally improve one
another. A diagram representing a variant of this
framework is shown in figure 2.2.

Current applications of GANs are essentially in
the field of image to image translation, i.e., gener-
ation of new images with specified features or in-
creased resolution [8, 9, 10, 11, 12]. Very few au-
thors have studied applications on other domains,
such as speech [13, 14] and text generation [15].
The flexibility of GANs gave rise to a plethora
of network structures and training methods, of
which some notable ones are: Auxiliary Condi-
tional Generative Adversarial Network (AC-GAN)
[16], Cycle-Consistent GAN (CycleGAN) [17] and
Wasserstein GAN [18]. In terms of performance, it
is difficult to evaluate these models quantitatively,
since these are generative models and they are pur-
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pose built. Nevertheless, the generated outputs are
often indistinguishable from real data in state of
the art implementations.

The original GANs [7] had a discriminator D
whose output was the binary classification of the
source of a sample (real or generated). If the orig-
inal data set was also divided in N classes, the D
would also be able to classify generated data, thus
appearing an extension to semi-supervised learning
[16]. These are the auxiliary conditional GANs.

For the evaluation of the generated samples,
an intra-class diversity measure was proposed in
[16], specifically the multi-scale structural similar-
ity (MS-SSIM). This metric aims to account only
for the same features as a human would perceive,
rather than calculate a pixel to pixel distance.
Thus, it is more indicated for image similarity.
Lack of similarity is a symptom of an important
failure mode during GAN training. It happens
when the generator collapses and generates a single
pattern that maximally confuses the discriminator.
A generator model that only outputs a single pat-
tern is very limited and not useful, so we should
avoid a collapsed generator.

In this chapter, we propose small modifications
in the structure the AC-GAN:

1. A softmax layer as the second output of the
discriminator;

2. A one-hot encoded second input in the gener-
ator instead of the class number;

3. Training with stochastic target vectors.

These changes aim to allow the use of the discrim-
inator as an online classifier and the generation of
samples with any given class likelihood.

2 Methods and Methodology

In this section we discuss the data pipeline for the
fitting and test of the model, the architecture of the
model, its training methodology and the definition
of the tests.

2.1 Data Pipeline

We assume that we have available a labelled data
set, which is defined as:

D =
{(

X(i), ι(i)
)

: i = 1, 2, . . . , nsamples

}
(2)

in which X ⊂Mt×d represents the sample data of d
channels (variables) and t time steps, and ι(i) ∈ N0

is the target class for that sample. For development
and testing purposes, the data set is split into three
subsets: training, validation and testing subsets.

The following step is feature extraction, which
depends on the data set, classifier model and ob-
jectives. Generally speaking, it is defined by f (i) =
F
(
X(i)

)
, where F represents the extraction func-

tion and f ⊂ Mnf is the output features, which is
a vector of length equal to the number of features
per sample, nf .

The features are then normalized, i.e., assum-
ing the variables follow normal distributions, whose
parameters are calculated in the training set. All
of the subsets are normalized with these parame-
ters and every new sample is normalized with these
same parameters. Finally, the targets are one-hot
encoded.

2.2 Stochastic Target GANs

The structure of the custom GAN is very similar to
a AC-GAN [16]. There are still separated generator
and discriminator networks, like in the vanilla GAN
introduced in [7]. The first input of the generator G
is a noise vector z with latent size l that is sampled
from a normal distribution N ∼

(
µ = 0, σ2 = 1

)
.

The second input of G is a one-hot vector that rep-
resents the class to be generated, while a AC-GAN
uses the class index. The generator network’s struc-
ture is free, but it must be a feed-forward neural
network. The structure is highly dependent on the
available data and the training hyperparameters.

The discriminator D takes samples as a vector of
length nf (number of features), which can either
come from a data set or the generator. These serve
as input for the discriminator network, whose struc-
ture is also free, depending on the type of data. D
has two outputs, being the first the validity of the
input sample. The validity is a scalar v ∈ [0, 1] ⊂ R,
i.e., a real number between 0 and 1. Validity below
0.5 denotes a generated sample and if it is above
or equal to 0.5, it corresponds to a real sample.
The discriminator has second output, which is the
classification of the sample as a one-hot vector.

The notation used in this study is explained
next. The data set samples are represented by a 3-
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element tuple xr, tr, sr, which are the sample data,
the target class and its source, respectively. These
are also called real samples, as opposed to gener-
ated samples, known as xg, tg, sg. xr and xg have
the same shape as f in section 2.1 and represent the
features obtained from the sample. The targets tr
and tg, for real and generated samples respectively,
are one-hot encoded vectors of the classes they rep-
resent. Assuming the classification problem has nc
classes, the one-hot vector t for class ι is a horizon-
tal vector of size 1 × nc composed of zeros, except
tι = 1. The source scalar, s, is either 1 for real
samples, or 0 for generated samples.

2.3 Model Training

The two networks are trained by Stochastic Gra-
dient Descent (SGD) simultaneously, in two inter-
woven stages (D-G-D-G-D-G ...) for a number of
epochs. A diagram that applies to both stages
is shown in figure 1. In SGD, the weights of the
model are updated according to the gradient of the
model’s loss on a batch of b samples. This means
that instead of vectors, the inputs and outputs of
the networks are matrices. In these, the first di-
mension corresponds to the sample and the second
to the variables (features, target index, among oth-
ers).

First stage: discriminator

The discriminator is trained with both real and
generated samples. Given a pre-selected batch size
b, b/2 samples are extracted from the data set, be-
ing denoted by xr. An equal amount of samples is
generated from G, xg. These samples are generated
by running G with two inputs:

xg = G(z, φ(ι)) (3)

The first input is the noise matrix z, which has the
following definition:

z = {zij ← N (0, 1), ∀i ∈ [1, n], j ∈ [1, l], i, j ∈ N}
(4)

where n is the number of samples to be generated
(in this case b/2) and l is the latent dimension of
the generator. Basically, a noise matrix is sampled
from the normal distribution.

The second input are the one-hot vectors of the
classes ι of the samples to be generated, which are

sampled from a discrete uniform distribution:

ι = {ιi ← U{1, nc}, ∀i ∈ [1, n] ⊂ N} (5)

where nc is the total number of classes in the prob-
lem and n is the number of samples. The one-hot
encoded input is φ(ι). For the stochastic targets,
the target vector is a vector where the element tk=ι
has a certain value p′ between 0 and 1, while the
other elements sum up to 1:

tk =


p′, k = ι

1− p′

nc − 1
, k 6= ι

(6)

Until now, we have defined all the data required
to train the discriminator. There are two analogue
tuples of data: (xr, tr, sr) and (xg, tg, sg). The sam-
ples xr and xg are fed into the discriminator D:

(v, y) = D(x) (7)

There are now two losses to be calculated, as seen
at the end of figure 1: the validity and classification
loss. The validity is a binary classification problem,
thus the loss function chosen is the binary cross-
entropy:

L1 = −(s log(v) + (1− s) log(1− v)) (8)

where L1 is the validity loss on a sample, s is the
value of sample’s source (0 or 1) and v is the pre-
dicted probability of the sample belonging to the
correct class, which is the first output of D.

The actual classification of a sample is a multi-
class problem, so the multi-class cross-entropy is
used:

L2 = −
nc∑
c=1

ti,c log(yi,c) (9)

where L2 is the classification loss of a sample i, ti,c
is the value of element c of the sample’s target t,
and yi,c is the output of D for the same sample.

The final loss is a weighted average of L1 and L2.
Finally, the discriminator’s weights are updated.

Second stage: generator

While the discriminator is trained with both real
and generated samples, the generator is trained
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Figure 1: Diagram representing the training process of the custom GAN.

without real samples. The process is the same as
shown in figure 1, but the data set is not used.

The noise z and indexes ι are sampled according
to (4) and (5). Analogously to discriminator train-
ing, a batch of b samples xg is obtained from the
generator so that xg = G(zg, φ(ιg)). We then cal-
culate the validity (8) and classification (9) losses
with the discriminator. Hence, the loss function of
the discriminator is also used with the generator.
However, the discriminator weights are frozen dur-
ing this stage, so only the generator’s weights are
updated to minimize these losses.

2.4 Classification Decision

A trained discriminator can be used to classify new
samples. However, the output class provided by
the discriminator is rarely taken as the final classi-
fication. There is often a decision method that pro-
vides the final classification, possibly context-based
information, such as data from other sensors.

Most of the neural network classifier models have
a final layer which is a softmax transfer function.
This function provides a probability distribution
over the possible classes. This is the second out-
put of D shown in (3). The probability of a given
sample x belonging to class i is given by:

yi = p (i | x) , for i = 1, 2, ..., nc (10)

where nc is the number of possible classes.

Given the probability distribution y, it makes
sense to set a threshold τ on yi so that if its value
drops below a pre-defined value, the output class is

disregarded as others:

output class =

{
class i, max y ≥ τ
others, max y < τ

(11)

This definition introduces the problem of determin-
ing an adequate value for the threshold.

The use of this method results in more false neg-
atives than using no threshold (or τ = 0). As a
consequence, increasing the threshold yields lower
recall of the classes i. Therefore, it is possible define
a threshold value such that the recall does not de-
crease further than, e.g., 5 or 10%. In most applica-
tions, false positives are worse than false negatives,
the exception being in critical conditions such as a
request for an emergency stop. These cases are rare
and should be specially handled to increase safety.

3 Tests and Results

This section describes the test methodologies fol-
lowed in this chapter. We are interested in evaluat-
ing the performance of both the generator and the
discriminator. The generator should find patterns
in the data set samples and create new samples
based on those patterns.

3.1 Result Validation

All tests use the same data split: 60% for the train-
ing set, 20% for validation and 20% for testing. The
split was fixed at the beginning of analysis, so that
it is not optimized for proposed methodology and
no data leakage occurs. We consider this hold-out
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split to be better than a k-fold cross-validation split
in regard to deployment-oriented analysis. On one
hand, a k-fold method requires the classifier to be
trained k times, thus having a training time roughly
k times larger than a hold-out split. On the other
hand, GANs are remarkably difficult to train and
it is highly unlikely that the same hyperparameter
set will allow the GAN training process to converge
in all folds.

The training set is used to train the classifier and
does not include any sample of non-gestures. The
purpose of the validation set is to optimize the hy-
perparameters of the classification model, i.e., neu-
ral network structure, added noise, normalization,
among others. Additionally, the model fitting pro-
cess is controlled by the model loss that is calcu-
lated online on the validation set, in order to pre-
vent over-fitting on the training data. This set does
not include any non-gesture sample, so that there
is no leakage of these data into the fitting process.
Finally, the test set is used to test the generaliza-
tion capability of the model and is only used when
the training and validation sets provide desirable
metrics. Therefore, the model is not optimized for
the test set and the metrics calculated on it should
provide a good measurement of the model perfor-
mance in other conditions.

3.2 Data Sets

We tested the presented methodology on two data
sets: the UC2017 Static and Dynamic Hand Ges-
tures data set [19] and UC2018 DualMyo data set
[20]. In the experiments, we denote the index 0
to the network abstractions for the first data set
(GAN0, D0, G0) and 1 for the second (GAN1, D1,
G1).

The UC2017 data set contains static and dy-
namic gesture samples captured with a data glove
and magnetic tracker. The library contains 24
static gesture classes with samples obtained from
eight subjects with a total of 100 repetitions for
each of the 24 classes (2400 samples in total). The
classifier is trained on 19 classes and the remain-
ing 5 were set aside to be used as the others class
(novel patterns).

There are no particular features extracted from
these data. The networks are trained with raw
data, which includes the hand’s joint angles pro-
vided by the data glove and the hand’s pitch,

sensed by the tracker. Thus, the features cho-
sen are simply a subset of channels of the avail-
able data. Finally, the features are standardized
by x′i = (xi − x̄i) /si, where x′i is the standardized
value of feature i, xi is the value of the feature,
x̄i and si are the mean and standard deviation of
the feature in the training set. The validation and
test sets are standardized by these same means and
standard deviations.

The UC2018 DualMyo data set comprises 8
classes of patterns with 110 repetitions each. Class
7 was set aside to become the class others, or novel
patterns. This means that the classifier is trained
on classes 0 through 6, and tested on all 8 classes.
This class was selected because it is not trivially
separated from the others in an unsupervised man-
ner.

Data samples are matrices X ∈Mt×d, where the
length t is 200 frames and the second dimension d
consists of the 16 Electromyography (EMG) chan-
nels. The feature extraction function chosen F is
the standard deviation of the sample along time,
i.e., one standard deviation per channel. Therefore,
the feature vector extracted from each sample f (i)

is a vector of length equal to the number of chan-
nels. This feature is often proportional to muscle
contraction strength, thus providing a muscle acti-
vation map around the forearm.

3.3 GAN Structure

The discriminator and generator networks may
take many shapes, under the presented framework.
Furthermore, there is no method to initialize a net-
work structure for a given problem. Generally, it
depends on the size of the data set, type and qual-
ity of the data and number of features, among oth-
ers. The initial structure is found by random grid
search on a varying number of layers and respective
nodes in large steps. The network’s performance
is evaluated on the validation set. When a good
structure is found, it is then optimized by manually
fine-tuning the number of nodes, transfer functions
and applying generalization aids. In this work, we
fixed the structure of the GAN’s networks for all
experiments.

The structure of the generator is shown on the
left side of figure 2. The depth of the network was
kept at two fully-connected (dense) hidden layers
with 256 nodes each. There are two inputs, the
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Figure 2: Structure of the GAN used on the UC2018 DualMyo data set for the evaluation of the proposed
methodology.

first being a noise vector z sampled from a random
normal distribution z ∼ N (µ = 0, σ = 1), with
a latent size equal to the number of features nf .
The second input is the stochastic target vector.
These are fully-connected to the first dense layer.
As shown in figure 2, Gaussian noise N (0, 0.1) is
added to each of the dense layers, followed by rec-
tified linear units (ReLU). The ReLU activations
are then normalized in the training batch, i.e., cen-
tred and scaled. Finally, the output is reduced to
a vector of length nf by a dense layer of that same
size, after which a linear transfer function provides
the network output. The length nf corresponds to
the number of features of a data set sample, so the
output is equivalent to the features of a real sample.

The introduction of Gaussian noise layers is typi-
cally recommended in generator networks and helps
increase the variance of generated samples. A fail-
ure mode of GANs is the mode collapse, in which
the generator learns and outputs an unique sample.
Adding noise during the training process, whether
through noise layers or noisy labels, helps prevent
this issue.

The discriminator is shown on the right side of
figure 2. It has a single input x, which can be either
generated (yg) or real (xr) samples, therefore hav-
ing length nf . A Gaussian noise layer N (0, 0.4)
is added next. Following that, there is a dense
layer with 300 nodes and a ReLU activation func-
tion. This layer is repeated one more time with
the same parameters. To aid generalization, there
is a dropout layer before the output, where 30% of
randomly chosen connections are dropped in each
training iteration. Afterwards, the networks splits

into two branches corresponding to its two out-
puts. The first output, the validity sd, has a sin-
gle fully-connected node, whose activation is then
transformed by the sigmoid function is order to re-
turn a value between 0 and 1. The second output
is also fully-connected with nc nodes, which cor-
responds to the number of classes of the problem.
In this last case, a softmax activation function is
applied in order to output a distribution of proba-
bilities over the number of classes.

3.4 Training Parameters

In section 2.3, we mentioned that the discriminator
D and generator G are trained separately, one after
the other, since they are different networks. There-
fore, they may have distinct training parameters,
and the success of a GAN framework is strongly
dependant of these parameters. The learning pro-
cess must be balanced so that one does not learn
much faster than the other, causing the mode col-
lapse failure mode. This occurs when the gener-
ator is trained to a state where it always outputs
the same value, independently of the input, thus
bringing the learning process to a halt.

The networks are balanced through the tuning
of the learning rates of D and G, and the relative
weights of the two losses of the generator. As a
reminder, the generator is trained with the losses
calculated on the discriminator. These are the va-
lidity (8), and classification losses (9). If the clas-
sification losses decrease faster than the validity,
the generator will focus on generating nc different
classes that are more easily separable, not neces-
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sarily resembling the original data. Therefore, we
increase the validity loss weight, so that G learns
to generate samples more akin to real data, rather
than more separable data.

Other relevant parameters include the training
momentum, number of epochs, the latent dimen-
sion of G, batch size and label noise strength. Ad-
ditionally, there are the learning rates for D and
G, and the loss weights of D. There are some rec-
ommended values for these parameters, but since
there is no established optimization process, they
were optimized by trial and error as a function of
the network losses and sample visualization.

Despite the GAN structure being the for both
the UC2017 SG and UC2018 DualMyo data sets,
the training parameters were optimized in differ-
ent directions. The networks GAN0 and GAN1
were trained for 600 and 300 epochs, respectively,
while the batch size was 32 samples in both cases.
The G0 and G1 latent sizes was set to 23 and
8. The stochastic target labels were sampled from
U(0.9, 1.0). In early trials, it was set to U(0.8, 1.0),
but the lower bound of 0.9 achieved better results
in combination with the remaining parameters.

The SGD optimization algorithm followed the
Adam update rule [21]. The learning rates were
set firstly to the typical value of 0.0002 for both
networks and data sets, but the rate for G ended
up being incrementally increased to 0.001, in order
to speed up the generator training. The discrimi-
nators D0 and D1 were trained with learning rates
of 0.001 and 0.0002, respectively, and the momen-
tum was kept at 0.5 in all cases. For both GAN0
and GAN1, the weight decay was set to 10−7 and
10−6 to D and G, respectively. Finally, the G va-
lidity loss weights were set to 1.1 and 1.3 for G0
and G1, respectively, while the classification loss
weights were 1.0 for G0 and 0.8 for G1. The train-
ing time for this setup is about 289 seconds in a
Tensorflow-based Keras implementation for GAN0
(63 seconds for GAN1). The nets are trained on a
Nvidia GTX970M GPU with 6GB of memory.

An example of the GAN1 losses is shown on fig-
ure 3. The discriminator and generator losses are
very close, which is expected since the loss functions
are the same, despite the G1 loss being calculated
from generated samples, while the D1 loss is ob-
tained from equal amounts of generated and real
samples. Both losses are still decreasing by epoch
300. However, looking at the generator loss compo-
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0.5

1.0

1.5

2.0

2.5

3.0

L
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s

G total loss
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Figure 3: Plot of the training losses of discrimina-
tor D1 and generator G1 validity loss (G-v) and
classification (G-c) loss components for each train-
ing epoch. All losses are monotonically decreasing
and the G-v loss has plateaued by epoch 300.

nents individually, we see that the classification loss
is decreasing, but the validity loss has plateaued.
This means that the network is improving the sep-
aration of the generated samples but their similar-
ity to the real samples is not improving. The slight
peaks found every 50 epochs are likely to be numeri-
cal errors caused by sampling G1 at the checkpoints
that occur at the same frequency.

3.5 Generator Performance

Firstly, we tested the quality of the samples created
by the GAN’s generator. The quality is determined
by the similarity between generated and real sam-
ples. There are plenty of similarity measures that
can be used, but since we have small feature vec-
tors, we opted by simply using the L2 distance be-
tween samples. The concept of distance is opposite
to similarity, thus the distance must be minimized
to improve similarity.

Formally, we are interested in knowing the dis-
tance between two sets of samples, X and Y .
These sets of data are matrices of shape (nsamples×
nf ), where nsamples may or may not be the same.
The L2 distance between the i-th sample of Y and
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X is thus given by:

li =
1

N

N∑
j=1

√√√√ nf∑
k=1

(Xjk − Yik)
2

(12)

where N is the number of samples in X and nf
the number of features. In short, the distance
between a sample Yi and the set X is the mean
L2 distance between Yi and all of the samples of X.

The following tests are presented:

1. Data set baseline distance:
Mean distance between data set samples of the
same class.
Standard deviation of the distance between
data set samples of the same class.

2. Generated data distance:
Mean distance between real and generated
samples of the same class.
Standard deviation of the distance between
real and generated samples of the same class.

3. Gaussian noise distance:
Mean distance between real and random noise
generated from Gaussian distributions.
Intra-class standard deviation of the distance
between real and noise samples.

Two baseline distances are established: a data set
and a random noise baseline. The data set baseline
establishes the ideal distance, i.e., the dispersion of
the real data set. The generated data distance mea-
sures how far the generated data are from the real
data, which should tend to the ideal metric when
these mimic perfectly the real data. The Gaussian
noise distance is the worst-case scenario that would
occur if the generator were to diverge from the real
data. In all cases, the distance metric is computed
for sets of samples within the same class. The ran-
domly generated data are sampled from Gaussian
distributions with mean and standard deviations
calculated from the real data, for each class indi-
vidually.

Examples of generated and real samples for each
gesture class of the DualMyo data set are shown
in figure 4, where the lowest signal is represented
in dark blue and the highest in yellow. A first
look shows that generally, the intensity of low state
signals is higher in generated samples than in real

ones. Nevertheless, that is not an issue since there
is still a visible gap between low and high signal
states. The last class, G7 or others, is a class cre-
ated by the generator that was not trained, there-
fore there is no equivalent in real samples.

While visualizing the samples provides a sub-
jective evaluation of the quality of the generated
samples, the first generator test is comprised by
a similarity measurement between data set sam-
ples, generated samples and samples drawn from
Gaussian distributions. The results are shown in
table 1 for the UC2017 SG data set and table 2
for the DualMyo data set. The mean distance val-
ues displayed in table 1 show that by class, most of
the GAN-generated samples are significantly closer
to the baseline than random, the exceptions being
classes 0, 2, 3 and 17. However, visualizations of
the samples show that the generated samples are
similar to the real samples. The dispersion of the
GAN-generated samples is closer to the baseline
than random, in all cases. The low dispersion of
random samples is uncharacteristic of real samples,
and might explain why their mean distance is lower
than GAN samples in some cases.

In respect to the DualMyo data set, table 2 shows
that GAN1 is significantly better than the random
distribution in mean distance, for all classes. How-
ever, the standard deviation of the distance, which
measures the dispersion within samples of the same
class, is generally significantly lower than that of
the data set. While the dispersion is comparatively
low, it is significant, as seen in figure 4. It also
indicates that the training of the GAN has not col-
lapsed into generating a single type of sample.

Owing to the similarity between generated and
trained samples, and the reasonable intra-class dis-
persion of the generated samples, we can conclude
that the generators are successfully trained.

3.6 Discriminator Performance

The objective of the presented methodology is to
improve the real-world performance of the discrim-
inator. The performance is strongly tied to the
accuracy of the classifier model, i.e., the number
of successful classifications over the total number
of gesture samples. However, the accuracy does
not reflect the rate of non-gestures classified as ges-
tures, which may happen in real-world conditions.
The metric of interest for this type of problem is
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Figure 4: Comparison between real (xr) and generated samples (xg) of each class of the UC2018
DualMyo. G7 is a class created by the GAN, so it does not have a real class equivalent.

Table 1: Similarity performance indicators between
samples of the UC2017 SG/DG data set, Gaussian
noise samples and GAN-generated samples.

Baseline GAN Random

Class Mean Std Mean Std Mean Std

0 4.32 1.83 5.06 2.41 4.49 1.60
1 4.19 1.45 3.96 1.38 4.85 0.77
2 4.33 1.54 4.19 1.41 4.45 0.97
3 4.56 1.84 3.95 1.20 4.22 1.52
4 2.84 1.01 2.58 0.96 3.70 0.76
5 4.57 1.85 4.29 1.66 6.35 1.07
6 4.82 1.72 4.32 1.49 6.27 1.36

Table 2: Similarity performance indicators between
samples of the UC2018 DualMyo data set, Gaussian
noise samples and GAN-generated samples.

Baseline GAN Random

Class Mean Std Mean Std Mean Std

0 1.43 0.63 1.44 0.33 4.74 0.20
1 3.20 1.40 3.55 0.86 5.06 1.58
2 2.28 0.69 2.10 0.57 2.47 0.58
3 4.03 1.66 4.09 0.93 6.36 1.89
4 2.32 0.71 2.18 0.63 4.02 0.70
5 1.95 0.77 2.00 0.85 2.55 0.46
6 2.44 0.83 2.38 0.81 3.24 0.47

the prediction accuracy.
The analysis of the discriminator’s performance

is done as a two-step problem. The first step is the
binary classification problem of novelty detection,
i.e., determining whether a new sample belongs to
one of the trained classes or not. The second prob-
lem is multi-class classification, where a prediction
is performed to find what the class of a sample
is, within the trained classes subset. The chosen
performance metric is the classification accuracy
(13). The novel detection accuracy (NDA) is de-
fined as the fraction of novel samples that are cor-
rectly identified. On the other hand, gesture classi-
fication accuracy (GCA) is the fraction of correctly
discriminated samples that belong to new classes.

Accuracy =
Number of correct predictions

Total number of predictions
(13)

The working hypothesis is that the data set aug-
mentation with the previously described GANs im-
proves the classification of gestures and unsuper-
vised classification of novel gestures. The baseline
performance is established by training a discrimi-
nator model with the data set samples. Following
that, since we found that presence of stochastic la-
bels on the data set helps training the GAN, we test
their specific contribution without using the GAN
framework. Finally, we test the performance of the
discriminator trained within the GAN framework
and retrained with real and generated samples:

Baseline: Discriminator trained regularly;

Test 1: Discriminator trained with stochastic tar-
get vectors;
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Test 2: Trained GAN discriminator (online aug-
mentation);

Test 3: Trained GAN discriminator retrained
with real and generated samples (offline aug-
mentation).

Additionally, these tests are repeated without
the threshold defined in (11), and with the thresh-
old tuned so that the GCA is around 95%, 90%
or 85%. The tests were performed on the UC2017
SG and UC2018 DualMyo data sets, described in
section 3.2.

The discriminator performance was measured in
several settings. To ensure that the differences be-
tween them are due to the proposed methodology,
the structure of the discriminator, figure 2, is fixed
for all tests. Additionally, all networks are initial-
ized with the same weights and the data set splits
(training, validation and testing) are fixed as well.

The baseline test consists of the performance
measurements calculated with the outputs of a dis-
criminator that was trained as a regular neural
network. The training hyperparameters were op-
timized for this purpose. The Adam optimizer was
used with a learning rate of 0.01. The training pro-
cess was halted using the early stopping technique,
where the loss on the validation data is monitored
online. The training process is stopped when the
validation loss stops decreasing for 12 consecutive
epochs in order to prevent over-fitting on the train-
ing data. Since this is a rather small training data
set in a simple network, the fitting process takes
just a few seconds.

In Test 1, the discriminator performance test is
the same as the baseline, except that the training
targets are stochastic vectors, as described in (6).
The maximum value of the target vector of each
sample was sampled before training from a uniform
distribution U∼(0.8, 1.0).

The second and third tests use the trained GAN
with the setup described in section 3.4. For Test
2, the discriminator is used as trained in the GAN
framework. For Test 3, it is retrained afterwards
with stochastic labels and the training set is aug-
mented offline with about +50% in number of sam-
ples.

All tests were repeated with different values of
thresholds τ for the final classification decision, as
defined in (11). The no-threshold case is equivalent
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Figure 5: Trade-off between test split GCA and
NDA a function of the decision threshold, on the
UC2018 DualMyo data set. The two vertical lines
correspond to the p = 0.95 and p = 0.90 thresholds.

to setting τ = 0. An example of the threshold op-
timization process on the UC2018 DualMyo data
set is shown on figure 5. This figure shows that
when no decision threshold is set, the GCA is at
its maximum while the NDA is at its minimum.
As the threshold increases, the GCA (classes) de-
creases as expected, but the NDA (others) increases
faster. Therefore, it is possible to numerically find
an optimum balance between GCA and NDA. This
balance was roughly set in the two data sets as the
maximum GCA attained in the baseline test minus
5% and 10%. For example, if the maximum GCA
is 100%, the threshold is tuned so that the GCA is
at least 95% or 100%.

The results of all tests on the UC2017 SG data set
are shown on table 3. When no decision threshold
is set, the baseline GCA and NDA are 94.7% and
0.0%, respectively.

The baseline test results show that the discrim-
inator’s NDA increases from 0 to 37.6% while the
GCA decreases by about 9% (p = 0.85). The use
of stochastic labels on Test 1 show a significant im-
provement of NDA to 83.0% (p = 0.90, τ = 0.67)
and 91.0% (p = 0.85, τ = 0.81). The augmented
discriminator of the GAN, Test 2, yields a further
improvement to 90.2% (p = 0.90, τ = 0.93) and
92.0% (p = 0.85, τ = 0.95). However, retrain-
ing the discriminator on Test 3 shows a decrease in
performance, when compared to the discriminator
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Table 3: Accuracy of D0’s predictions on the test split. The Class and Others columns correspond to
the trained and others classes, respectively.

τ = 0 Accuracy (%), p = 0.90 Accuracy (%), p = 0.85

Class Others Mean Class* Others Mean τ0.90 Class* Others Mean τ0.85

Baseline 94.7 0.0 47.4 90.0 31.2 60.6 0.92 86.3 37.6 62.0 0.96
Test 1 95.0 0.0 47.5 90.0 83.0 86.5 0.67 85.0 91.0 88.0 0.81
Test 2 95.8 0.0 47.9 90.3 90.2 90.2 0.93 85.0 92.0 88.5 0.95
Test 3 95.3 0.0 47.6 90.0 83.2 86.6 0.66 85.5 90.0 87.8 0.77

*Closest accuracy value to p after threshold optimization.

Table 4: Accuracy of D1’s predictions on the test split. The Class and Others columns correspond to
the trained and others classes, respectively.

τ = 0 Accuracy (%), p = 0.95 Accuracy (%), p = 0.90

Class Others Mean Class* Others Mean τ0.95 Class* Others Mean τ0.90

Baseline 98.1 0.0 57.4 96.1 17.3 63.4 0.95 96.1 17.3 63.4 0.95
Test 1 100.0 0.0 58.5 95.5 90.9 93.6 0.63 91.0 95.5 92.9 0.71
Test 2 98.1 0.0 57.4 95.5 94.5 95.1 0.70 90.3 100.0 94.3 0.82
Test 3 100.0 0.0 58.5 95.5 72.7 86.0 0.69 90.3 88.2 89.4 0.82

*Closest accuracy value to p after threshold optimization.

augmented online with GANs.

The discriminator tests were repeated for the
UC2018 DualMyo data set and the results are
shown in table 4. The behaviour on this data set is
similar to that seen on the previous data set. The
classification accuracy without a decision thresh-
old (τ = 0) is above 98.1% in this case, so the
optimization targets for this threshold were set to
0.95 and 0.90. There is a significant increase in
NDA between the baseline and the remaining tests.
The NDA increases from 17.3% in the baseline to
94.5% on Test 2 (p = 0.95), or 100.0% when the
classification decision threshold is optimized so that
p = 0.90. However, similarly to the results on the
previous data set, Test 3 shows a large drop in NDA
to 72.7%.

The results show that in all data sets, the pro-
posed methodology greatly increases NDA without
significantly impacting GCA, as seen in tables 3
and 4. The baseline results show that the discrim-
inator is not capable of detecting novelty in any
circumstance. Additionally, the decision threshold
does not change substantially after optimization in
the baseline test (0.92 to 0.96). This result indi-
cates that most of the predictions done by the neu-

ral network show high scores despite the sample’s
provenance. The use of stochastic target vectors in
place of one-hot vectors lowers the prediction scores
while maintaining the network’s discriminability.
Test 1 shows that it is possible to increase NDA
while maintaining a high GCA with thresholds as
low as 0.67 on the UC2017SG data set. The on-
line data augmentation enabled by GANs yields a
further improvement in NDA, as demonstrated for
all data sets in Test 2. The offline data set aug-
mentation tests (Test 3) show lower NDA than on-
line augmentation. This is probably explained by
the lower variance of the samples generated by a
fully trained generative network (offline augmenta-
tion), when compared to the samples created by the
dynamic generative model in the GAN framework
(online augmentation).

4 Conclusion

In this work we implemented a novel way of solv-
ing the issue of classification of out-of-vocabulary
gestures. Very often, these gestures are classified
as an existing class and are difficult to remove with
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a classification threshold. The proposed solution
has two components: (1) the use of a generative
model (GAN) to augment the data set online with
new generated samples, (2) the use of stochastic
target vectors to decrease the average prediction
score, thus facilitating threshold tuning. Finally, a
threshold is set on the prediction score in order to
make a final classification.

Tests were performed on two data sets to com-
pare the discrimination capability of a neural net-
work with and without the proposed changes. The
results show that the use of stochastic target vec-
tors improves significantly the novelty detection ac-
curacy while maintaining a high classification ac-
curacy. Furthermore, the online augmentation of
the discriminator’s training data set with a GAN
yields a further improvement. However, while of-
fline augmentation may offer better classification
accuracy, it showed worse performance on novelty
detection when compared to both online augmen-
tation and stochastic target vectors. The results
on the UC2017 SG data set showed a maximum
classification accuracy of 95.8%. Without thresh-
old tuning, the NDA is 0.0% in all cases. With
threshold tuning, the NDA increased from 0.0%
to 90.2% using the GAN framework coupled with
stochastic target vectors, which is significantly bet-
ter than the baseline (31.2%). The results on the
UC2018 DualMyo data set showed a similar be-
haviour, where the proposed methodology had a
NDA of 94.5% and the baseline 17.3%.

A major challenge of the proposed methodology
is the successful training of the GAN. The genera-
tive model performance can still be improved in or-
der to generate more diverse samples, even though
the performance achieved in this work resulted in
an improvement of NDA. Despite the success, fur-
ther validation of the methodology should be done
on richer data sets. Further work should also be
done on the generation of time-series.
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