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ABSTRACT

Online gesture classification can rely on unsupervised segmentation in order to divide the data stream
into static and dynamic segments for individual classification. However, this process requires motion
detection calibration and adds complexity to the classification, thus becoming an additional failure
point. An alternative is the sequential (dynamic) classification of the data stream. In this study we pro-
pose the use of recurrent neural networks (RNNs) to improve the online classification of hand gestures
with Electromyography (EMG) signals acquired from the forearm muscles. The proposed method-
ology was evaluated on the UC2018 DualMyo and the NinaPro DBS5 data set. The performance of
a Feed-Forward Neural Network (FFNN), a Recurrent Neural Network (RNN), a Long Short-Term
Memory network (LSTM) and a Gated Recurrent Unit (GRU) are compared and discussed. Addi-
tionally, an alternative performance index, the gesture detection accuracy, is proposed to evaluate
the performance of the model during online classification. It is demonstrated that the static model
(FFNN) and the dynamic models (LSTM, RNN and GRU) achieve similar accuracy for both data sets,
i.e., about 95% for the DualMyo and about 91% for the NinaPro DBS5. Although both models had
similar accuracies, the dynamic models (LSTM and GRU) have a third of the parameters, presenting
smaller training and inference times. + + Long Short-Term Memory (LSTM)
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1. Introduction provided by the parameters that define its state at each time

step, while the static model is limited to the window of time

Sequential classification is the process of classification of a
data stream in which each new frame of data originates a new
prediction. In this way, given n new time steps, the classifi-
cation model outputs n predictions. Furthermore, the classifi-
cation of frame i can only use the information available in that
frame and the previous, i.e., i, i—1, i—2,.... As a consequence,
the classification predictions are available in real-time and there
is no need to wait for a gesture to end.

It is possible to achieve sequential classification in two ways:
(1) using a dynamic classification model which takes as input
raw or processed data in a sequential fashion; (2) a static model
whose input are features determined from a window of frames
ending at each time step of the input sequence, Simao et al.
(2019). In both cases, the model must have some type of mem-
ory of previous events. The dynamic model has the “memory”
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steps that it is fed.

A dynamic model has some advantages relative to a static
one. It is easier to implement online, as new data can be fed
directly into the model one-by-one or by batches, without af-
fecting its output. On the contrary, the static model’s data must
be split into windows of constant or variable size. Therefore, a
window size must be specified, which can cause a decrease in
accuracy of the model. Gestures can vary in length due to the
speed of the user and/or his/her range of motion. In such a case,
a small window will split the data of longer gestures and a large
window will attach unimportant data to shorter gestures, Simao
et al. (2016). Depending on the problem, a balance might be
difficult to find, so it is worth pursuing the use of a dynamic
model to avoid this problem of gesture time scale.

The classification of gesture patterns in EMG data obtained
from the forearm’s muscles using Convolutional Neural Net-
works (CNN) is proposed by Wei et al. (2017). The perfor-
mance of different classifiers (CNN, LSTM, and hybrid solu-
tions) is presented in Xie et al. (2018). It was reported that the



hybrid solutions present the best performance. A hybrid CNN
and RNN architecture that aims to better capture temporal prop-
erties of EMG signals for gesture recognition is proposed in
Hu et al. (2018). The authors also propose a novel EMG im-
age representation, allowing deep learning architectures to ex-
tract implicit correlations from EMG. Experiments indicate that
the performance obtained outperforms state-of-the-art methods
Hu et al. (2018). An RNN based approach that outperforms
the typical window-wise approaches for hand movement clas-
sification is proposed in Koch et al. (2018). A comparative
analysis between different RNN configurations for EMG-based
hand gesture classification is in Samadani (2018). In particular,
RNNs with recurrent units of LSTM and gated recurrent unit
(GRU) are evaluated. The NinaPro2 hand gesture dataset was
used, achieving a classification accuracy of 86.7%. An inter-
esting study proposes a model and a deep-learning-based do-
main adaptation method, 2-Stage RNN, to approximate the do-
main shift for recognition accuracy enhancement Ketyké et al.
(2019). The achieved classification accuracy using NinaPro (12
gestures) is about 85% and the NinaPro (8 gestures) is about
91%. The selected features have a great impact into EMG-
based pattern classification. Many times the feature set is opti-
mized for a specific application, lacking the capacity to general-
ize. Previous studies report that high performance in EMG clas-
sification can be achieved from simple feature sets, namely the
standard deviation Wolf et al. (2013) and the root mean square
Ju and Liu (2014), Paleari et al. (2015).

In this study, we propose the use of LSTM networks LeCun
et al. (2015) to classify gesture patterns from EMG data. Re-
sults are compared with other classifiers. This is, to the best
of our knowledge, a novel application of LSTM and RNN in
general to online gesture classification, presenting advantages
through the simplification of the data chain from the sensors to
the classification model and online output.

2. Methodology

In this section we discuss the data pipeline for the fitting and
test of the model, its architecture, training methodology and
performance indicators.

2.1. Recurrent Networks

A RNN is an extension of a FFNN with loops in the hidden
layers. This allows the model to take as input a sequence of
samples and find time-relationships between them. However,
they have been found to have issues in learning long-term re-
lationships Bengio et al. (1994). LSTM networks solve this
issue by adding parameters to the hidden node loops so that
they can acquire and release states depending on the input se-
quence Hochreiter and Schmidhuber (1997). Therefore, states
are activated according to short-term events, while the network
can keep those states active indefinitely, providing long-term
memory to the network. LSTM have been found to be better at
learning sequences than classic RNN.

A given network can be generalized by equation (1). Input
X e R™ is a sequence of ¢ steps and d channels. Output ¥ €
R™" is a sequence of the same length ¢ and with dimensionality

2

n. (number of output channels — classes). The parameters of
the network are represented by ®. This form represents a one-
to-one configuration in which each time step of the input data
generates a time step of the output.

Y = Lo(X) (1

While a regular RNN node has a single weight and bias,
an LSTM network has four times that value. There are four
weight/bias pairs:

1. forget gate layer;

2. input gate layer;

3. output gate layer;

4. state gate layer.

The forward pass equations of an LSTM cell are described in
Equation (2). The input and forget gates, i, (2a) and f; (2b) re-
spectively, control how much of the previous hidden state /,_;
and current input x, contribute to the cell state ¢,. The forget, in-
put and output gates’ activation is scaled by a sigmoid function
o and the hidden state is the output filtered with the hyperbolic
tangent function tanh.

i =0 (W [he1, x] + b)) (2a)
fi=0(Wy - [hr.x] + by) (2b)
0 =0 Wy - [he—1, %] + by) (2¢)

¢; = tanh (W, - [hy—y, x,] + b.) (2d)
e =frocm1 40 G (2e)
h; = o, - tanh(c;) (2f)

Equations (2) show that the activation value of a LSTM cell
requires knowledge of the preceding value in time. Therefore,
the optimization of the network’s parameters, through Stochas-
tic Gradient Descent (SGD), is done on sequences of input data
time steps. Typically, the input data are split into shorter win-
dows in order to reduce the Backpropagation (BP) time depth.
The structure of the network is similar to FFNN. The input layer
has a fixed time-length and number of variables. Fully con-
nected nodes and LSTM layers compose the hidden layers, and
lastly, there is an output layer with a softmax transfer function
for classification. The time-length of the input and output lay-
ers is the same, due to the sequence-to-sequence classification
configuration. The state of the LSTM cells is kept between con-
secutive training sequences.

An alternative to LSTM networks with less parameters is a
Gated Recurrent Unit (GRU), Cho et al. (2014). An update gate
(3a) with a single weight controls how much of the previous
hidden state activation /,_; influences the new state. The reset
gate (3b) has the opposite function and its activation controls
how much past states are discarded. The memory state update
h, in given by (3c) and the final state is a weighted average of the
previous state /,_; and the state update h; (3d). GRU networks
have the same advantages as LSTM networks when compared
to simple RNNs, but have less parameters. Therefore, they are
faster in training and inference.

2 =0 W - [, x]) (3a)



Gl

G2

Ground truth: [

time

Prediction: | | | [

Gl G2 Gl
Outcome: @

®

@

Fig. 1. Types of possible outcomes of the classification of gesture sequences. In this example, there are two gesture classes G1 and G2 interwoven by pauses.
The outcome 1 represents a true positive (TP), the outcome 2 represents a misclassification (MC), the outcome 3 represents a false positive (FP) and the

outcome 4 represents a false negative (FN).

re =0 (W, [h-1, x,]) (3b)
h, = tanh (W - [r; * hy_1, X,]) 3c¢)
he = (1 = zp) * hiy +Zl*ilt (3d)

The networks are trained with SGD with early stopping when
the classification loss stops decreasing on a non-trained data
set. Early stopping prevents the model from over-fitting on the
training data, but we must ensure a good local solution is reach-
ing through hyper-parameter tuning. The hyper-parameters of
interest are the architecture of the network (layers and size),
the learning rate, momentum, batch size and sequence length.
There is no method to define these hyper-parameters, so they
must be set through manual or stochastic search. However,
since LSTM networks are resource intensive careful manual
search is preferred. The most important parameters to manu-
ally tune are the architecture and learning rate, while the others
are set to commonly used values.

2.2. Data Pipeline

We assume that we have a labelled data set such that:

D={(XD00) 1 i=12 . Heamples) (4)
where X € R™ represents the sample data of d channels
(variables) and ¢ time steps, and () € Nj is the vector of tar-
get class’ indexes for each of the sample’s time step. Index (i)
corresponds to the sample’s index in the data set. The data set is
split into three subsets: training, validation and testing sub-sets
for development and evaluation purposes.

Depending on the classifier model, features must then be ex-
tracted from the data. Generally, it is defined by F® = 7 (X(i)),
where ¥ represents the extraction function and F' € R are the
output features, which is a matrix of length equal to the number
of features per sample, 7. In this solution the features cannot
be calculated with time steps from the future. Feature vector
F,, at time step 7, can only be determined with the sample time
steps X,, where m < 1.

Research on EMG signal processing showed us that there
is not a single best solution for feature extraction Phinyomark
et al.. Previous work showed that the standard deviation of the
EMG signals correlates well with force being exerted by the
muscle, so we chose to use the standard deviation as the single
feature. It is calculated in a window of w time steps ending at
step i by:

1« —\2
Fij=7l3—7 (X(i—k)j_xij) . (5a)
=0
_ 1 w—1
Xij=— ) Xin, (5b)
WS

where j = 1,2,...n. with n. being the number of channels in
the EMG data. Since a single feature is extracted, the dimen-
sionality of F is the same as X, except the skipped time steps
at the beginning of a sequence due to the features being calcu-
lated on a fixed window size. This is not an issue because most
sequences begin in a rest state.

The features are then normalized, i.e., assuming the variables
follow normal distributions, whose parameters are calculated in
the training set. All of the subsets are normalized with these pa-
rameters and every new sample is normalized with these same
parameters. Finally, the targets are one-hot encoded.

As previously mentioned, each time step in X; has a matching
target ¢;. Given that, the features are calculated on a window of
frames, the choice of target label for each window is ambigu-
ous. Therefore, we determined that it is given by the mode of
the targets within that window ending at i:

ti=mode ({t;x : k=0,1,...,w=2,w—1}) (6)

The output class sequences may be noisy due to noise in the
source EMG data, user mistakes or class uncertainty in the tran-
sitions between gestures. These sources lead to small portions
of a gesture, mainly in its boundaries, to be misclassified. We
propose some post-processing steps in order to prevent errors
due to these misclassifications. Firstly, gestures with length
below an arbitrary value are disregarded. Then, consecutive
gestures of the same class, broken by the previous filter, are
merged, e.g., 1-1-2-1-1-1 is turned into 1-1-1-1-1-1.

2.3. Gesture Detection Criterion

A common performance indicator in continuous gesture clas-
sification is the Jaccard similarity index, also known as intersec-
tion over union. For a gesture spanning the true targets A and
prediction B, it is defined by:

IAN Bl
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J(A,B) = @)

The co-domain is between 0 and 1, with 0 meaning that there
is no overlap between the reference value and the prediction,



Fig. 2. UC2018 DualMyo dataset gestures: (G0) rest, (G1) closed fist, (G2) open hand, (G3) wave in, (G4) wave out, (G5) double-tap, (G6) hand down, (G7)
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Fig. 3. Data processing chain for the RNN networks performance analysis.

while 1 means that there is perfect overlap. However, for ges-
ture recognition, there is no difference whether there is 50%
or perfect overlap. For this reason, we propose a different cri-
terion for performance measurement of the classifier’s output.
We consider that there are four types of outcome in multi-class
gesture detection, Fig. 1:

1. True positive (TP) — good classification;

2. Misclassification (MC) — wrong gesture detected;

3. False positive (FP) — gesture detected when there is none;
4. False negative (FN) — gesture not detected.

This list is derived from the four types of outcome in binary
classification with the difference that true negatives are not
considered and misclassifications (wrong gesture detected) are
added. An example of each outcome is shown in Fig. 1.

We considered that good classifications are correctly pre-
dicted gestures that have an overlap of at least 50% with the
ground truth. If we have an overlap inferior to 50% it can be
an indication that we are in the presence of a wrongly classified
gesture. Misclassification occur when there an overlap between
a predicted gesture and a ground truth gesture but its classifica-
tion is wrong. False positives occur when a gesture is detected
during a pause (rest state) and false negatives occur when there
is no overlap between a predicted and a ground truth gesture.
The final score is given by:

TP

score =
TP+ MC+FP+FN

®)

A score of 1.0 means that no errors occurred.

3. Experiments

3.1. Test Setup

The presented methodology was tested on the synthetic se-
quences of the UC2018 DualMyo data set Simdo et al. (2018)
and a similar subset of the NinaPro DBS5 data set Pizzolato et al.
(2017), both used for EMG-based hand gesture recognition. All
the tests use the same fixed data split and the same data samples:
60% for the training set, 20% for validation and 20% for test-
ing. The training set is used to train the classifier, while the val-
idation set’s performance is used to optimize the hyperparam-
eters of the classification model, i.e., neural network structure
and training hyper-parameters. Finally, the test set is used to
test the generalization capability of the model and is only used
when the training and validation sets provide desirable metrics.
Therefore, the model is not optimized for the test set and the
metrics calculated on it should provide a good measurement of
the model performance in other conditions.

The UC2018 DualMyo data set acquisition setup has a total
of 16 EMG channels and 8 gesture classes with 110 samples
each. There are a total of 95 synthetic sequences, each one
composed by 8 gesture samples, Fig. 2, each one with a normal
acquisition rate of 200 Hz. While the hand shape is represented
in the figures, it is not strictly defined. However, it is important
that the correct muscles groups are actuated. Their actuation



is guaranteed by forcing the palm moves in the correct direc-
tion. For example, for the wave in gesture, the palm must be
forced towards the body. Each sequence has a length of about
50 seconds, i.e., about 10000 time steps. We seek to compare
the performance between a static model operating on windows
of frames to a dynamic model that predicts on the time steps
sequentially.

The NinaPro DBS data set has the same acquisition as the
DualMyo data set. It is composed by ordered sequences of
17 gesture classes, each class repeated 6 times. In order to
prevent the models from learning the ordered sequence of ges-
tures, the repetitions were randomly reorganized. Furthermore,
we selected a subset of 8 out of the 17 classes, similar to the
DualMyo’s set of gesture classes. The resulting data set has
nearly the same number of time steps, but the number of repe-
titions is only half of those in the DualMyo’s data set. In this
paper, we only present the models used for the DualMyo data
set, but the description of the NinaPro models is available in the
supplementary materials.

The data processing chain is slightly different for the static
and dynamic classification models, as shown in Fig. 3. We
start by extracting features from the 95 sequences, denominated
samples. Their length is the number of time steps of the data
set’s sequences (10000), while the number of EMG channels
is 16. The shape of the input data is maintained after feature
extraction. As previously mentioned, the feature chosen is the
standard deviation (o) along time of a window of 100 time steps
(0.5 seconds which is the average length of a gesture on the
UC2018 DualMyo dataset), for each channel. Therefore, the
number of variables is maintained. The step of the window
feature extraction is a single frame, in order to keep the same
time scale between the raw input data and their features.

The following step in the data processing chain is concatenat-
ing every sample into the same master sequence. Every sample
starts and begins during a pause, so there are no discontinuities
in the master sequence. Afterwards, this sequence can be either
fed directly into the dynamic model or windowed again for the
static classifier. In the latter case, the chosen window span was
200 frames for the DualMyo data set and 300 frames for the Ni-
naPro. The rolling window has step 1 for both cases. The span
of 200/300 time steps is specially chosen since it corresponds to
one second of data, which is about the typical minimum length
of a gesture. The windows of time steps are concatenated into
a single vector, which then serves as the classification predictor
for that time step. The target of that time step is the mode of
targets for the same time window.

3.1.1. Static Model

The static classifier chosen is a FFNN, which has faster train-
ing and inference times for large amount of data, compared to
other machine leaning methods. Considering the the DualMyo
data set, there are about 933 thousand time steps, of which 561
thousand are used for training and the remaining are evenly split
into the validation and testing sets. Since the selected features
are a concatenated window of 200 time steps, the feature vector
has length 3200.

The chosen model has an input layer with 3200 nodes, two
fully-connected hidden layers with 512 units and a softmax out-
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Fig. 4. Structure of the FFNN used as the static classifier model for the
DualMyo data set.

put layer with 8 nodes, equal to the number of gesture classes
in the data set. The transfer function of the hidden layers is
the hyperbolic tangent. A representation of the network struc-
ture is shown in Fig. 4. This structure was determined by
manual search but the output is not very sensitive to the hyper-
parameters on this problem. There are almost 2 million train-
able parameters, which were optimized with the ADAM vari-
ant of SGD Kingma and Ba (2014), a learning rate of 0.01 and
a batch size of 256. The optimization is halted with the early
stopping method, to prevent over-fitting, when the model loss
of the validation set stops decreasing during 12 iterations. The
model is then tested on all data splits (training, validation and
testing) and the following metrics are calculated:

1. Training time;

2. Inference time;

3. Frame-wise accuracy (FWA);

4. Gesture detection accuracy (DA).

3.1.2. Dynamic Model

The dynamic model (considering the LSTM defined in sec-
tion 2.1) has 933 thousand time steps of the data set that were
split in the same way as for the static model. However, in this
model, the input features are a single frame of data from the
16 EMG channels of the DualMyo data set, instead of the 3200
features the static model uses. This has great advantages for
the size of the model and the total memory used. The same
reasoning was applied to the NinaPro DBS5 data set.

The LSTM model, Fig. 5, has 16 input nodes followed by
a fully-connected (dense) layer of 400 units. Afterwards, there
is a recurrent layer with 256 LSTM cells, which feeds a dense
layer of 8 units. Finally, a softmax transfer function provides
the classification output probability distribution. The dense and
LSTM hidden layers have the hyperbolic tangent as their acti-
vation function. This structure was also determined by man-
ual search, with the performance having a low sensitivity to
the hyper-parameters. This structure has just 683 thousand pa-
rameters, 66% less than the static model mainly due to the low
dimensionality of the input layer. The optimization of the pa-
rameters is also done with ADAM’s SGD, with a learning rate
of 0.001, batch size of 10 and sequence length of 200 time steps.
The training process is halted after 12 epochs without improve-
ment of the validation loss.

We compared the performance of the LSTM model with a
simple RNN model and a GRU RNN. These models have the
same structure and number of nodes as the LSTM model and
were trained in the same circumstances.
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Fig. 5. Structure of the LSTM used as the dynamic classifier model, with a
one-to-one input-output classification configuration.

3.2. Results and Discussion

The networks were defined and trained with the Keras li-
brary (python) using the Tensorflow backend Chollet et al.
(2015); Abadi et al. (2015). The hardware used was a com-
puter with a Nvidia GTX970M GPU (6GB VRAM), an Intel
17-6700HQ CPU and 32GB of RAM. The classification mod-
els were trained according to the methodology previously de-
scribed. The training and inference processes are performed
on the GPU. In our application target the classified gestures
serve to intuitively interface with an industrial robot. In such
scenario, the EMG sensors send data (wireless) to the above-
mentioned external computer that in turn is connected to the
robot. All data processing is performed on the external com-
puter allowing continuous online gesture classification.

The training and inference times for the UC2018 DualMyo
data set are shown in table 1. The number of training time steps
changes slightly between the static and dynamic models due to
the padding added to the end of the sequences in order to allow
fixed-size batches of data to be fed into the dynamic model.
The padding is typically filled by zeros and does not influence
the training loss and the parameter optimization. The training
time of the dynamic models (LSTM and GRU) is about 165
seconds, much less than the RNN (302 seconds) and the FFNN
(412 seconds). The difference is mainly due to the discrepancy
between the model’s sizes, since the learning rate used to train
the LSTM and GRU is an order of magnitude lower than that of
the static model. For that reason, the LSTM and GRU are also
faster in inference, classifying about 930 thousand time steps
(about 1 hour and 20 minutes of data) in less than 4 seconds,
while the static model FENN takes 12 seconds and the RNN
takes 15 seconds. In any case, inference time is well below the
acquisition time, but the hardware requirements are high and
still need optimization for embedded and portable devices. An-
other disadvantage of the static model is that it requires much
more memory during training, since each time step requires 200
frames to be stored. This is a significant constraint for large data
sets. Concerning the training and inference times the NinaPro
DBS data set presents similar behaviour.

The accuracy of the models is presented in table 2 for both
the static and dynamic models. We present the frame-wise
accuracy (proportion of correctly classified time steps) of the
models in the 3 data splits, training, validation and testing. We
also present the detection accuracy, as defined in (8). Addition-
ally, we show what types of detection errors occurred in each
data split: (1) true positives (TP), (2) misclassifications (MC),
(3) false positives (FP), and (4) false negatives (FN).

In terms of frame-wise accuracy, both models present sim-

Table 1. Training and inference times for the static and dynamic models,
tested on the UC2018 DualMyo data set. Results for training and testing
time are in seconds.

Model Train Train Inference  Test Frames/
Steps  Time (s) Steps Time (s) second
FFNN 555,607 411.8 923,579 11.2 82k
RNN 555,600 301.9 928,000 14.9 62k
GRU 555,600 164.5 928,000 3.5 265k
LSTM 555,600 164.5 928,000 3.8 244k

ilar classification accuracy on the training and test sets, while
the validation performance is slightly lower. The discrepancy
between data splits is due to particularities in the sequences of
each split rather than over-fitting, since the performance on the
testing set is close to that of the training set.

While the frame-wise classification accuracy is an indica-
tor of overall performance of the model, it does not tell us if
there are misclassifications in the middle of gestures, causing
the model to momentarily and wrongly announce a poor ges-
ture classification. The detection accuracy measurements in-
dicate whether gestures as a whole are correctly identified, or
if the model is finding gestures when it should not (false pos-
itives). The gesture detection accuracy was determined on the
post-processed output of the models. Gestures below a spe-
cific length (0.5 seconds) are disregarded in order to reduce the
classification noise of the models. For the DualMyo data set
the detection accuracy was generally better than the frame-wise
accuracy, table 2. It exceeded 99% in the test split for all mod-
els. The validation and test splits presented no errors, but the
truth/prediction overlap was lower than 50% in a few gesture
samples. For the NinaPro dataset, the results are slightly differ-
ent since the frame-wise accuracy was generally better than the
detection accuracy in the test split, except for the FFNN. The
best detection accuracy obtained was about 91% in the test split
in the static model (FFNN).

Outcomes of type MC (misclassifications) are the result of
a gesture being totally or partially misclassified. Examples of
FP outcomes are visible in Fig. 6, where often times gesture
5 (G5) is detected in the transitions between the gesture and
the surrounding rest states. This gesture (double-tap) recruits a
small group of muscles and it is a burst movement so that the
signal itself is weak when compared to the signals generated by
other gestures. In such conditions it becomes harder to differen-
tiate from the rest state. During the transition between rest and
a gesture, the feature value increases or decreases slowly since
it is the standard deviation of the signal in a window of frames.
Therefore, there are some frames during the transition whose
features can be similar to gesture 5. While the current feature
set leads to false positives during transition periods (other ges-
tures classified as double), these false positives have very short
durations and are easily removed in post-processing, therefore
not affecting the final classification performance. Despite these
errors, gesture 5 is correctly classified when it appears isolated.
In Fig. 7, the raw signal output of the LSTM model is shown
in the same conditions and for the same sequence. There is
considerably less classification noise and less false positives.



Table 2. Framewise accuracy (FWA) and detection accuracy (DA) of the classification models, as tested on the UC2018 DualMyo synthetic sequences and
the NinaPro DBS data set subset.

DualMyo Ninapro DB5
Outcomes Outcomes
Model  Split FWA DA TP MC EP EN FWA DA TP MC EP EN
Train  96.94 98.51 454 4 0 1 98.76  100.00 250 0 0 0
FFNN  Val 96.33  98.55 151 1 0 2 93.75 9647 75 2 0 0
Test  96.65 99.34 151 0 0 1 90.82  90.82 81 5 0 1
Train  95.44  98.90 455 1 0 0 96.72  98.74 251 1 0 1
RNN Val 9473  98.97 152 1 0 0 90.33  84.96 76 6 1 5
Test 9531 99.66 152 0 0 1 91.59 87.90 78 5 0 3
Train  97.00 99.78 456 1 0 0 96.15 98.81 250 1 0 2
GRU Val 95.75  99.64 152 0 0 0 91.60 91.28 83 4 1 0
Test  96.14 100.00 152 0 0 0 92.07 87.73 78 6 0 3
Train 9599 99.18 455 1 0 0 95.52  98.10 250 1 0 2
LSTM Val 94.87 98.31 152 1 0 0 90.83  88.05 78 6 0 2
Test 9532 99.33 152 0 0 0 90.82 86.11 76 5 0 4
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Fig. 6. Raw output of the static model on the first sequence of UC2018 DualMyo’s test set and the corresponding targets in dashed lines.
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Fig. 7. Raw output of the LSTM model on the first sequence of UC2018 DualMyo’s test set and the corresponding targets in dashed lines.



4. Conclusion

In this study we proposed the use of an LSTM neural net-
work to improve the online classification of hand gestures from
EMG signals acquired from the forearm muscles. The results
obtained in the UC2018 DualMyo and the NinaPro DB5 data
set were compared with a static model (FFNN) and other dy-
namic models (RNN and GRU). The proposed performance in-
dex, the gesture detection accuracy, demonstrated to be a good
indicator to evaluate the performance of the model during on-
line classification. It can be concluded that the training and in-
ference time of the dynamic models (LSTM and GRU) is much
smaller than for the RNN and the FFNN. In terms of accuracy, it
can be concluded that results are similar for both static and dy-
namic models, with the GRU and LSTM presenting a slightly
better performance.

Further optimization should be done in both models in order
to decrease the number of parameters to make it better suited to
embedded systems. Additionally, the methodology should be
validated in larger data sets, which should also use other types
of signals.
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