
Robot Dynamics: a Recursive Algorithm for Efficient
Calculation of Christoffel Symbols

Mohammad Safeeaa,b, Pedro Netoa, Richard Beareeb
aUniversity of Coimbra, Department of Mechanical Engineering, 3030-788 Coimbra,

Portugal
bArts et Métiers, LISPEN, 59800 Lille, France

Abstract

Christoffel symbols of the first kind are very important in robot dynamics.
They are used for tuning various proposed robot controllers, for determining
the bounds on Coriolis/Centrifugal matrix, for mathematical formulation of op-
timal trajectory calculation, among others. In the literature of robot dynamics,
Christoffel symbols of the first kind are calculated from Lagrangian dynamics
using an off-line generated symbolic formula. In this study we present a novel
and efficient recursive, non-symbolic, method where Christoffel symbols of the
first kind are calculated on-the-fly based on the inertial parameters of robot’s
links and their transformation matrices. The proposed method was analyzed in
terms of execution time, computational complexity and numerical error. Results
show that the proposed algorithm compares favorably with existing methods.

Keywords: Dynamics, Christoffel symbols, recursive algorithms

Email address: ms@uc.pt, pedro.neto@dem.uc.pt, Richard.BEAREE@ensam.eu
(Mohammad Safeeaa,b, Pedro Netoa, Richard Beareeb)

Preprint submitted to Elsevier August 4, 2019



Nomenclature
L Lagrangian function of kinematic chain (robot)
T kinetic energy
U potential energy
τ vector of joints torques of the robot
τk torque at joint k of the robot
qj , q̇j , q̈j angular position, velocity and acceleration of joint j of the robot
gk torque due to gravity at joint k of the robot
akj element (k, j) of the mass matrix of the robot
ckji Christoffel symbol of the first kind
pCkj vector connecting the origin of frame j and the center of mass of

link k

kj unit vector associated with the z axis of joint j

µCkj ,ΓCkj inertial moment and linear acceleration of center of mass of link
k transferred by frame j

Γτ
Ckj ,Γ

n
Ckj ,Γ

cor
Ckj tangential, normal and Coriolis acceleration vectors transferred

by frame j into the center of mass of link k

µτ
Ckj ,µ

n
Ckj ,µ

cor
Ckj inertial moment vectors due to angular acceleration, centrifugal

and Coriolis effects transferred by frame j into the center of
mass of link k

Rk rotation matrix of link k with respect to base frame of the robot
Ikk inertial tensor of link k taken at its center of mass with respect

to the link’s local frame
hk
ji,f

k
ji half of the inertial force/moment at the center of mass of link k

due to Coriolis effect resulting from a unit angular velocity at
joints j and i

Fk
ji,H

k
ji half of the inertial force/moment calculated recursively at the

joint k due to Coriolis effect resulting from a unit angular
velocity at joints j and i

1. Introduction

Christoffel symbols are important tools in applied sciences, engineering,
mathematics and physics. In the latter they appear in rigid body dynamics
[1] and general relativity [2]. In the area of robotics, Christoffel symbols of
the first kind appear when deducing the equation of robot dynamics using the
Lagrangian:

L = T − U (1)
where L is the Lagrangian function, T is the kinetic energy and U is the potential
energy, all described in terms of the generalized coordinates q. In such a case,
the associated generalized forces τ :

τ =
d

dt
(
δL
δq̇

)T − (
δL
δq

)T (2)

2



Consequently, the canonical form of the inverse dynamics derived using the
Lagrangian is:

τk =
∑
j

akj q̈j +
∑
i,j

ckjiq̇j q̇i + gk (3)

where τk is the torque at joint k, akj is the (k, j) element of the mass matrix,
q̈j is the angular acceleration of joint j, q̇j is the angular velocity of joint j, gk
is the torque at joint k due to gravity, and ckji represents Christoffel symbols of
the first kind (later in the document referred to by Christoffel symbols). From
[3], ckji is given by:

ckji = ckij =
1

2

(
∂akj
∂qi

+
∂aki
∂qj

− ∂aij
∂qk

)
(4)

The Lagrangian method is a straight forward approach for deducing the dy-
namics equations of mechanical systems. However, the method requires partial
differentiation, which makes it unpractical to apply manually for complex sys-
tems. Thus, symbolic manipulation methods have been utilized to perform the
differentiation by a computer [4]. Nevertheless, the resulting equations gen-
erated by a computer lack the efficiency in terms of execution-time, this fact
becomes more noticeable for robots with highe number of joints or Degrees Of
Freedom (DOF) as noted in [5] and most remarkably in [6], where the author
compares the execution-times required to run dynamics simulations based on
models derived by Newton-Euler recursive technique and Euler-Lagrange tech-
nique. It is reported execution-times difference of order of magnitude which put
the case in favor of the Newton-Euler recursion method.

Owing to their efficiency, researchers developed various recursive algorithms
[7], namely for calculating the inverse dynamics [8], the forward dynamics [9, 10]
and the joint space inertia matrix [11, 12]. Nevertheless, we are not aware
of any recursive algorithm for calculating Christoffel symbols numerically. As
such, in this study we present a method for calculating Christoffel symbols
recursively. We also analyze the performance of the proposed algorithm in terms
of number of operations, execution time and numerical error. MATLAB code
of the proposed algorithm, including implementation examples, are available in
the supplementary material.

The article is organized as the following: Section 2 discusses the motivation
and the contributions of the proposed study. Section 3 lists the principles used
in this study for describing the dynamics of serially-linked articulated rigid
bodies. In Section 4 the proposed algorithm for calculating Christoffel symbols
recursively is deduced. In Section 5 tests and results are presented, where
the proposed recursive algorithm is evaluated against Lagrangian method for
calculating Christoffel symbols. Section 6 describes an example showing the
benefits of the proposed algorithm as applied to industrial robot manipulators.
Finally the article ends with the conclusion in Section 7.

3



2. Motivation and Contribution

Calculating Christoffel symbols of the first kind is very important in robot
dynamics. Hence, Christoffel symbols have been used for solving various robotics
problems. In [13] they are used for calculating the bounds on the Corio-
lis/Centrifugal matrix. These bounds play an important role for designing and
tuning various robot controllers [14, 15, 16, 17, 18, 19]. In addition, Christoffel
symbols have been used in a dynamic neurocontroller of robotic arms [20]. They
can also be used to calculate a special form of Coriolis matrix that preserves
the skew symmetry property [21] (an essential property for various control al-
gorithms). Christoffel symbols are also important for planning time optimal
trajectories [22] and optimal velocity-profile generation [23, 24]. In such a case,
the geometric path is parametrized using a vector function of a scalar parameter
θ (t). Consequently, the inverse dynamics equation (which enters the optimiza-
tion as differential constraint) is reformulated to decouple the configuration
dependent coefficients from the time dependent parameter θ (t), as shown in
[23]:

τ = m̃ (q) θ̈ + c̃ (q) θ̇2 + d̃ (q) (5)

In such a case, Christoffel symbols are utilized for calculating the (configuration
dependent) coefficients c̃ (q) in each configuration on the discretized geometrical
path.

In [25] Christoffel symbols are calculated in symbolic form, based on the
Lagrangian formulation of the robot dynamics. This method has become the
norm and is presented in standard robotics textbooks [26, 21, 27], including
the Handbook of Robotics [28] in page 44, where the deduction of Christoffel
symbols is introduced in the Dynamics chapter under the subsection “2.3.2
Lagrange Formulation”. Nevertheless, symbolic methods for performing the
calculations have major drawbacks, namely:

• The symbolic manipulation of the equations is time consuming, so it has
to be performed off-line;

• For high DOF, the symbolic equations become very complex resulting in
much slower execution times than recursive methods, a fact reported in
literature [5].

Apart from that, a recursive method for calculating Christoffel symbols has
several advantages over the symbolic method:

• Unlike the symbolic methods, recursive methods can be used on-the-fly,
and do not require an off-line preprocessing. This makes recursive methods
essential for calculating the Christoffel symbols on-the-fly in robots that
change its kinematic chain and dynamic model, for example by adding or
subtracting extra bodies (including Reconfigurable and Self Assembling
robots or when attaching bodies to the end-effector (EEF)).

4



• Since that recursive methods are used on-the-fly, the proposed recursive
method allows updating the dynamical constants (dynamical model) of
the robot on-the-fly. This allows the algorithm to use initial estimates of
dynamic constants while learning and tuning them more accurately during
operation. This can not be done easily in symbolic methods that require
off-line code regeneration.

Moreover, the proposed method calculates Christoffel symbols based on the
robot’s transformation matrices and inertial parameters, without requiring par-
tial differentiation. Apart from the previously listed computational advantages,
the proposed method offers more insight into the nature of Christoffel symbols
from the point of view of Newton mechanics.

3. Theory and principles

The proposed algorithm builds on what we call the frame injection principle
introduced in [12], also illustrated in Figure 1, where a frame j attached to joint
j (according to the modified Denavit Hartenberg convention [29]) transfers to
link k a linear acceleration into its center of mass and an inertial moment around
its center of mass. In this study we notate them by ΓCkj and µCkj , respectively.
This transfer is due to the rotational effect of joint j around its axis of rotation,
or the z axis of frame j. This cause and effect relationship between frame j and
link k is referred to by the subscript kj in ΓCkj and µCkj , while the subscript
C is used to refer to the center of mass of link k. The same subscript notation
will hold throughout this study for denoting frame-link interaction of cause-and-
effect unless stated otherwise.

3.1. Link’s acceleration due to the single-frame rotation
Each frame j transfers to link k three acceleration vectors tangential acceler-

ation, normal acceleration and Coriolis acceleration. The first of which is shown
in Figure 2, it is due to the angular acceleration of frame j:

Γτ
Ckj = εj × pCkj (6)

where Γτ
Ckj is the tangential acceleration of the center of mass of link k due to

the rotation of frame j, the symbol × is used to denote the cross product and
pCkj is the vector connecting the origin of frame j and the center of mass of link
k. εj is the angular acceleration of joint j:

εj = q̈jkj (7)

where kj is the unit vector associated with the z axis of joint j and q̈j is the
angular acceleration of that joint.

Concerning the normal acceleration, each frame j transfers to link k a normal
acceleration due to its rotation, Figure 2:

Γn
Ckj = ωj × (ωj × pCkj) (8)

5



Figure 1: Inertial moment µCkj and linear acceleration ΓCkj of center of mass of link k
transferred by frame j

6



Figure 2: Tangential, normal and Coriolis accelerations of center of mass of link k transferred
by frame j

7



where ωj is the angular velocity of link j due to the rotational effect of joint j.
It is given by:

ωj = q̇jkj (9)
We can rewrite the equation of the normal acceleration transferred to link k due
to frame j by:

Γn
Ckj = kj × (kj × pCkj)q̇

2
j (10)

The third acceleration transferred is Coriolis acceleration, Figure 2, in which
each frame j transfers to center of mass of link k Coriolis acceleration Γcor

Ckj :

Γcor
Ckj = 2ωj × vr

Ckj (11)
where vr

Ckj is the velocity transferred to the center of mass of link k from frames
j + 1 up to frame k. The superscript r is used to denote that this is a relative
velocity and C to refer to the center of mass of link k, so that vr

Ckj can be
calculated from:

vr
Ckj =

k∑
m=j+1

ωm × pCkm (12)

The total linear acceleration transferred by frame j to the center of mass of link
k is given by:

ΓCkj = Γτ
Ckj + Γn

Ckj + Γcor
Ckj (13)

3.2. Link’s inertial moment due to single-frame effect
Each frame j transfers to link k three inertial moments, the first of which is

due to angular acceleration of frame j:

µτ
Ckj = (RkIkkRT

k )εj (14)
where µτ

Ckj is the moment transferred by frame j into link k due to frame’s j
angular acceleration, Rk is the rotation matrix of frame k in relation to base
frame and Ikk is 3×3 inertial tensor of link k around its center of mass represented
in frame k.

The second inertial moment transferred from frame j to link k is due to
centrifugal effect:

µn
Ckj =

1

2
(Lkωj)× ωj (15)

where Lk is a 3× 3 matrix that is calculated from:

Lk = Rk(tr(Ikk)13 − 2Ikk)RT
k (16)

The subscript in Lk is to notate that the matrix calculated pertains to link k,
tr(Ikk) is the trace of the inertial tensor and 13 is the identity matrix.

8



The third inertial moment transferred from frame j to link k is due to Coriolis
effect:

µcor
Ckj = (Lkωj)× ωr

kj (17)

where ωr
kj can be calculated from:

ωr
kj =

k∑
m=j+1

ωm (18)

Thus, the total inertial moment transferred to link k around its center of mass
due to the rotational effect of frame j is given by:

µCkj = µτ
Ckj + µn

Ckj + µcor
Ckj (19)

4. Calculating Christoffel symbols

For articulated rigid bodies in a weightless environment (no gravitational
field) equation (3) becomes:∑

j

akj q̈j +
∑
i,j

ckjiq̇j q̇i = τk (20)

We propose a scenario where only joints i and j of the articulated rigid bodies
are in motion with constant angular velocities, while the other joints are fixed.
Then, the left hand side of equation (20) becomes:∑

i,j

ckjiq̇j q̇i = ckjj q̇
2
j + 2ckjiq̇j q̇i + ckiiq̇

2
i (21)

Considering the frame injection principle, the right hand side of equation (20)
is the torque resulting from the sum of three inertial moments:

τk = τkj
+ τkji

+ τki
(22)

where:

• τkj
is the the torque due to the Centrifugal effect resulting from motion

of joint j. Thus, it is a function of q̇2j ;

• τkji
is the the torque due to the Coriolis effect resulting from motion of

joints j and i. Thus, it is a function of the product q̇j q̇i;

• τki is the the torque due to the Centrifugal effect resulting from motion
of joint i. Thus, it is a function of q̇2i .

9



Figure 3: Backward recursion on moments and forces

From equations (21) and (22) we find that:

τkj = ckjj q̇
2
j (23)

τkji
= 2ckjiq̇j q̇i (24)

τki
= ckiiq̇

2
i (25)

In such a case, to calculate ckjj , ckji and ckii we assign a unitary value to the
angular velocities q̇j and q̇i. Then, equations (23),(24),(25) are interpreted as:

• The Christoffel symbol ckji is equal to half of the torque τkji which acts on
joint k due to Coriolis effect resulting from the unit angular velocities at
joints j and i;

• The Christoffel symbol ckjj is equal to the torque τkj which acts on joint k
due to Centrifugal effect resulting from the unit angular velocity at joint
j;

• The same applies for Christoffel symbol ckii which results from ckjj after a
change of index.

To calculate the Christoffel symbols ckji we apply backward recursion on the
forces and moments shown in Figure 3, where:

• hk
ji is half of the inertial moment µcor

Ckj at the center of mass of link k. It
is due to Coriolis effect resulting from a unit angular velocity at joints j
and i. From equation (17) of the frame injection principle, hk

ji is given by:

hk
ji =

1

2
µcor

Ckj =
1

2
(Lkkj)× ki (26)

10



Table 1: Comparison for calculating Christoffel symbols of a 5 DOF serially linked robot using
different methods

Criteria Lagrangian Lagrangian Proposed
(Optimized) (Not optimized) method

Size of generated file (bytes) 778 732 67 873 609 4 497
Off-line time for function generation 8 days 897 sec -

On-line execution time (seconds) 4.6e-04 96 9.9e-5

• fk
ji is half of the inertial force at the center of mass of link k due to Γcor

Ckj .
It is due to Coriolis effect resulting from a unit angular velocity at joints
j and i. From equation (11) of the frame injection principle, fk

ji is given
by:

fk
ji =

1

2
mkΓ

cor
Ckj = mkkj × (ki × pCki) (27)

We calculate the Christoffel symbols ckji recursively, by applying a backward
recursion on Figure 3 for the inertial forces fk

ji and the inertial moments hk
ji:

Fk
ji = Fk+1

ji + fk
ji (28)

Hk
ji = Hk+1

ji + hk
ji + pCkk × fk

ji + lk ×Fk+1
ji (29)

ckji = kT
k H

k
ji (30)

where Fk
ji is half of the inertial force calculated recursively at joint k due to

the unit angular velocity at joints j and i. Hk
ji is half of the inertial moment

calculated recursively at joint k due to the unit angular velocity at joints j and
i, and the superscript T in kT

k is to denote the transpose. By applying a similar
approach on normal accelerations we can calculate ckii (c

k
jj). It is noticed that

the resulting equations for calculating ckii and ckjj are exactly similar to the ones
in the presented algorithm (for calculating ckji) only with indices changed.

5. Implementation and results

To prove the validity of the proposed method for calculating Christoffel
symbols and to assess its performance, a comparison with symbolic Lagrangian
based method was performed. The code is provided in the supplementary ma-
terial. The robot used to run the test is a 5 DOF serially linked robot, its
structure is described in the file robotStructure_5DOF.mat. This robot is gen-
erated using the file generateRandomRobot.m in which the mass of each link was
generated randomly in the range [0,1] kg. The inertial tensor of each link was
generated as random positive definite matrix in which each element of the ma-
trix is in the range [0,1] kg m2. Denavit-Hartenberg (DH) parameters of each

11



link were also generated randomly. Afterwards, using MATLAB, Christoffel
symbols of the robot were calculated using:

1. The proposed algorithm, which is implemented in the MATALB function
christoffelNumerically.m.

2. An off-line generated MATLAB function which contains the symbolic
equations generated using Lagrangian method, chri_symbGen5DOF.m. In
this case, the optimization option of the code generator was set to true,
as to optimize the generated symbolic equations.

3. Using an off-line generated MATLAB function which contains the sym-
bolic equations generated using Lagrangian method chri_symbGen5DOFnoOpt.m.
In this case, the optimization option of the symbolic equation generator
was set to false.

The Christoffel symbols of the manipulator were calculated twice, once using
symbolic function and another using the proposed method. Table 1 shows a
comparison of achieved results. The proposed recursive method is superior in
various aspects, including in terms of execution time (4.6X times faster for a 5
DOF robot). The tests were carried out on a personal computer with Intel(R)
Core(TM) i7-6850K CPU @ 3.6 GHz, under Windows 10, running MATLAB
2018a. For a 6 DOF robot, the script has been running for two months without
finishing the symbolic equations generation (the automatic optimization of the
generated equations is extremely time consuming). On the other hand, using the
proposed algorithm to calculate Christoffel symbols for 6 DOF robot requires
13.3e-5 seconds, the file with the test is a01_timeExecution6DOF.m found in the
supplementary material.

Table 2 shows a summary of the computational complexity of the pro-
posed algorithm measured in the number of floating point operations (addi-
tions and multiplications) as function of n, the number of DOF of the robot.
A detailed breakdown of the computational complexity is found in the file
Operation_Count.ods found in the supplementary material.

Finally, to measure the numerical accuracy of the calculations, the following
metric-value was defined:

e =
2

n3

∑
i,j,k

∣∣∣∣∣ckji − ĉkji
ckji + ĉkji

∣∣∣∣∣ for each, ckji ̸= 0 (31)

where e is the relative error, ckji is Christoffel symbol calculated using the
proposed method and ĉkji is Christoffel symbol calculated using the symbolic
method. From various calculations using randomly generated configurations,
the maximum (worst) e value achieved is 2.196e− 14, indicating that the error
is so small mainly due to numerical rounding errors.

6. Application Example

An important application for the proposed algorithm is in minimum-time
trajectory optimization for industrial manipulators working in flexible manufac-

12



Table 2: Computational complexity of the proposed method
Additions Multiplications

12n3 + 19n2 + 40n− 1 21
2
n3 + 45

2
n2 + 49n

turing. In such a case, calculating Christoffel symbols efficiently and on-the-fly
is of importance. Because, they enter into the formulation of the minimum-time
optimization problem based on robot dynamics as shown in [30, 31], where the
elements of vector c̃ (q) in equation (5) are calculated based on the mass matrix
and Christoffel symbols:

c̃k =
∑
j

akjq
′′
j +

∑
ckijq

′
iq

′
j (32)

where c̃k is the kth element of the vector c̃ (q) , q′j is calculated from:

q′j =
dqj
dθ

(33)

and q′′j is calculated from:

q′′j =
d2qj
dθ2

(34)

A representative scenario is shown in Figure 4, where a 7 DOF industrial
robot is used to palletize objects in a flexible-manufacturing production line. Op-
timizing the robot motion for achieving minimum-time trajectory is very impor-
tant for achieving high productivity. However, due to the flexible-manufacturing
requirements, the robot is required to manipulate various types of objects, with
different inertial data (inertial tensor, mass, center of mass). Consequently, the
inertial data of the object has to be taken into consideration for optimizing the
robot motion while moving the object. This can be done by considering the last
link of the robot and the object as a one body when the robot is manipulating
it on the planned path.

In such a case, a laser sensor is used to read the bar-code sticker (on the
object) which includes the inertial data of the object. When a new object (with
different inertial data) is present, the control algorithm calculates the equiva-
lent inertial data of the last link coupled with the object. Considering both,
the inertia of the last link of the robot and the object. Afterwards, the opti-
mization problem is invoked, where Christoffel symbols are calculated efficiently
and on-the-fly using our algorithm. In comparison, deducing the equations of
Christoffel symbols by symbolic manipulation creates a bottleneck in the prob-
lem formulation, where generating the symbolic equations is (extremely) time
consuming (requires an off-line generation phase which is eliminated by our re-
cursive algorithm). This limits the applicability of the traditional method for

13



Figure 4: Minimum-time trajectory optimization for industrial manipulator performing
palatalization in flexible-manufacturing scenario.

14



calculating Christoffel symbols for variable inertias in time critical operations.
After formulating the problem, the time required to perform the optimization
is of order of seconds [31].

This application example shows the importance of our algorithm for per-
forming Christoffel symbols calculation in a practical application, where our
algorithm offers two fundamental advantages:

1. Christoffel symbols are calculated on-the-fly (without requiring an ex-
tremely time consuming off-line phase), even when the inertial data are
changing;

2. Christoffel symbols are calculated more efficiently using our recursive algo-
rithm than using the traditional method (symbolic equation generation).

7. Conclusion

In this study we proposed recursive algorithm for calculating Christoffel sym-
bols efficiently for serially linked robots. The algorithm achieves better efficiency
over Lagrangian based symbolic method. This increase in efficiency is achieved
by performing backward recursion on forces and moments. As compared to
symbolic method, computational testing proves that the proposed algorithm
is (1) efficient (faster execution time), (2) precise (negligible numerical error),
and most importantly (3) it does not require a time consuming off-line code
generation phase.

8. Acknowledgements

This research was partially supported by Portugal 2020 project DM4Manufacturing
POCI-01-0145-FEDER-016418 by UE/FEDER through the program COMPETE
2020, and the Portuguese Foundation for Science and Technology (FCT) SFRH/BD/131091/2017
and COBOTIS (PTDC/EMEEME/ 32595/2017).

References

[1] L. Sciavicco, B. Siciliano, L. Villani, Lagrange and newton-euler dynamic
modeling of a gear-driven robot manipulator with inclusion of motor inertia
effects, Advanced robotics 10 (1995) 317–334.

[2] C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation, W.H. Freeman
and Company, 1973.

[3] Y. Liu, H. Yu, A survey of underactuated mechanical systems, IET Control
Theory & Applications 7 (2013) 921–935.

[4] C. P. Neuman, J. J. Murray, Symbolically efficient formulations for com-
putational robot dynamics, Journal of robotic systems 4 (1987) 743–769.

15



[5] W. Khalil, Dynamic modeling of robots using recursive newton-euler tech-
niques, in: ICINCO2010, 2010.

[6] H. Hoifodt, Dynamic modeling and simulation of robot manipulators: the
newton-euler formulation (2011).

[7] R. Featherstone, D. Orin, Robot dynamics: equations and algorithms, in:
ICRA, 2000, pp. 826–834.

[8] J. Y. Luh, M. W. Walker, R. P. Paul, On-line computational scheme for
mechanical manipulators, Journal of Dynamic Systems, Measurement, and
Control 102 (1980) 69–76.

[9] R. Featherstone, A divide-and-conquer articulated-body algorithm for par-
allel o (log (n)) calculation of rigid-body dynamics. part 1: Basic algorithm,
The International Journal of Robotics Research 18 (1999) 867–875.

[10] R. Featherstone, A divide-and-conquer articulated-body algorithm for par-
allel o (log (n)) calculation of rigid-body dynamics. part 2: Trees, loops,
and accuracy, The International Journal of Robotics Research 18 (1999)
876–892.

[11] R. Featherstone, Efficient factorization of the joint-space inertia matrix for
branched kinematic trees, The International Journal of Robotics Research
24 (2005) 487–500.

[12] M. Safeea, R. Bearee, P. Neto, Reducing the computational complexity
of mass-matrix calculation for high dof robots, in: 2018 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), 2018, pp.
5614–5619. doi:10.1109/IROS.2018.8593775.

[13] R. Gunawardana, F. Ghorbel, On the uniform boundedness of the corio-
lis/centrifugal terms in the robot equations of motion, International Jour-
nal of Robotics and Automation 14 (1999) 45–53.

[14] R. Kelly, Comments on” adaptive pd controller for robot manipulators,
IEEE Transactions on Robotics and Automation 9 (1993) 117–119.

[15] P. Tomei, Adaptive pd controller for robot manipulators, IEEE Transac-
tions on Robotics and Automation 7 (1991) 565–570.

[16] J. Alvarez-Ramirez, I. Cervantes, R. Kelly, Pid regulation of robot ma-
nipulators: stability and performance, Systems & control letters 41 (2000)
73–83.

[17] I. Cervantes, J. Alvarez-Ramirez, On the pid tracking control of robot
manipulators, Systems & control letters 42 (2001) 37–46.

[18] Z. Qu, J. Dorsey, Robust tracking control of robots by a linear feedback
law, IEEE Transactions on Automatic Control 36 (1991) 1081–1084.

16



[19] R. Ortega, A. Loria, R. Kelly, A semiglobally stable output feedback pid
regulator for robot manipulator, automatic control, IEEE Transaction Au-
gust 40 (1995).

[20] J. I. Mulero-Martinez, An improved dynamic neurocontroller based on
christoffel symbols, IEEE transactions on neural networks 18 (2007) 865–
879.

[21] B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, Robotics: modelling, plan-
ning and control, Springer Science & Business Media, 2010.

[22] F. Pfeiffer, R. Johanni, A concept for manipulator trajectory planning,
IEEE Journal on Robotics and Automation 3 (1987) 115–123.

[23] T. Lipp, S. Boyd, Minimum-time speed optimisation over a fixed path,
International Journal of Control 87 (2014) 1297–1311.

[24] Á. Nagy, I. Vajk, Non-convex time-optimal trajectory planning for robot
manipulators, Journal of Dynamic Systems, Measurement, and Control
(2019).

[25] S. Yin, J. Yuh, An efficient algorithm for automatic generation of manipu-
lator dynamic equations, in: Robotics and Automation, 1989. Proceedings.,
1989 IEEE International Conference on, IEEE, 1989, pp. 1812–1817.

[26] K. M. Lynch, F. C. Park, Modern Robotics: Mechanics, Planning, and
Control, 1st ed., Cambridge University Press, New York, NY, USA, 2017.

[27] S. M. LaValle, Planning algorithms, Cambridge university press, 2006.

[28] B. Siciliano, O. Khatib, Springer handbook of robotics, Springer, 2016.

[29] J. J. Craig, Introduction to robotics: mechanics and control, volume 3,
Pearson Prentice Hall Upper Saddle River, 2005.

[30] P. Reynoso-Mora, W. Chen, M. Tomizuka, A convex relaxation for the
time-optimal trajectory planning of robotic manipulators along predeter-
mined geometric paths, Optimal Control Applications and Methods 37
(2016) 1263–1281.

[31] D. Verscheure, B. Demeulenäre, J. Swevers, J. De Schutter, M. Diehl, Prac-
tical time-optimal trajectory planning for robots: a convex optimization
approach, IEEE Transactions on Automatic Control (2008).

17


