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Abstract This paper presents a method for robot self-
recognition and self-adaptation through the analysis of the
contact between the robot end effector and its surrounding
environment. Often, in off-line robot programming, the ideal-
ized robotic environment (the virtual one) does not reflect
accurately the real one. In this situation, we are in the presence
of a partially unknown environment (PUE). Thus, robotic
systems must have some degree of autonomy to overcome
this situation, especially when contact exists. The proposed
force/motion control system has an external control loop
based on forces and torques exerted on the robot end effector
and an internal control loop based on robot motion. The
external control loop is tested with an optimal proportional
integrative (PI) and a fuzzy-PI controller. The system perfor-
mance is validated with real-world experiments involving
contact in PUEs.
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1 Introduction

Today, the roboticsmarket imposes that robots are programmed
more quickly, more easily and used in more challenging tasks
[1, 2]. In this context, off-line robot programming (OLP) is
often considered a good solution. Different approaches to OLP
have been proposed, most of them based on CAD data. This
includes an OLP system based on a CAD/CAM/CAE software
for the shoe-manufacturing industry [3], the definition of robot

paths for spray painting processes [4], the generation of robot
paths from CAD for a friction stir welding process [5] and
direct OLP from a common CAD package [6–8]. In addition,
there are also OLP commercial software packages in which
CAD drawings serve as its input. The problem is that all data
from CAD (the CAD drawings representing the robotic cell in
study) are nominal data that often do not reflect accurately the
real robotic environment. In this context, we may be planning
robot paths for a robotic scenario that does not actually exist, at
least in its original configuration. Thus, we are in the presence
of a partially unknown environment (PUE). These differences
between the idealized robot environment (the virtual one) and
the real robotic environment can have different origins: the
unpredictable dynamic behaviour of the real environment after
contact with the robot or other equipments, robotic arm deflec-
tion, errors from the robot calibration process [9, 10], an
incorrect mapping of data from the virtual to the real environ-
ment, the roughness of contact surfaces, poorly representative
CAD models and the presence of foreigner objects in the work
environment. It follows from this that in order to have total
control over the OLP process, the robot has to know in real time
the actual configuration of its surrounding environment. In this
way, robotic systems must have some degree of autonomy to
overcome this situation. This has been achieved by incorporat-
ing sensors into the robotic systems [11–16]. Important studies
have been conducted in this area, for example, the incorpora-
tion of sensors to increase industrial robot autonomy for weld-
ing applications [11, 12] or for a general purpose robotic
framework [13]. Sensor integration in task-level programming
has also been a matter of study [14]. A number of vision-based
solutions have been proposed to face PUEs. Kenney et al. use a
vision-based approach to facilitate human–robot interaction
and robot operation in unstructured environments [15].
Lopez-Juarez et al. explore force feedback to adapt robot
behaviours to changing environments [16].
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This paper proposes a force/motion control system to in-
crease robot autonomy and thus to achieve a suitable robot
performance in a PUE. The idea behind this is to control the
end-effector pose (position and orientation) in real time and in
accordance with the forces and torques from the contact of the
robot end effector with its surrounding environment. This
allows the robot to keep a given contact force and avoid
undesirable impacts. The proposed force/motion control system
has an external control loop based on forces and torques being
exerted on the robot end effector and an internal control loop
based on robot motion. The external control loop is tested with
a proportional integrative (PI) and a fuzzy-PI controller. The
system performance is validated with real-world experiments
involving contact in PUEs. Finally, results are discussed and
some considerations about future work directions are made.

2 Force control applied to robotics

Over the last years, force control applied to robotics has
assumed a growing importance in the proper execution of
some robotic tasks [17]. These tasks are those in which the
robot is required to maintain a given set force (deburring,
polishing and assembly tasks) or others in which the deflex-
ion of the robotic arm is a major factor (milling, grinding,
drilling and friction stir welding). Even though these two
cases appear to be different, both can be treated in the same
way by applying a force control technique, passive force
control [18] or active force control [18–23]. Hybrid force/-
motion control has been presented in literature as one of the
most suitable methods to deal with PUEs [18].

Considering the approach proposed in this paper, this meth-
od allows controlling the non-constrained task directions (end-
effector motion directions) in motion control and the con-
strained task directions in force control. The system is designed

so that force control prevails over motion control. This means
that position errors are tolerated to ensure force regulation.

Several robotic solutions using force control techniques
have been developed and successfully applied to various
industrial processes such as polishing [19] and deburring
[20]. A number of force control techniques (fuzzy, PI, PID,
hybrid, etc.) with varying complexity have been proposed
thus far [20–23].

Fuzzy control was first introduced and implemented in
the early 1970s in an attempt to design controllers for
systems structurally difficult to model due to naturally exist-
ing nonlinearities and other modelling complexities [24].
Hsieh et al. present an optimal predicted fuzzy-PI gain
scheduling controller to control the constant turning force
process with a fixed metal removal rate under various cut-
ting conditions [25]. Mendes et al. present a hybrid solution
exploring robot force/motion control and different modalities
of discretization and fitting of nominal data [26, 27]. Lopes at
al. present a force–impedance-controlled industrial robot [28].
Gudur and Dixit propose a study in which the roll force and
roll torque in a cold flat rolling process are modelled using
first-order Takagi–Sugeno (T-S) fuzzy models [29]. Many
other studies apply T-S fuzzy models [30–34].

3 Robot control system

3.1 Hybrid force/motion control

Let us consider a rigid robot (manipulator) of n links, the
dynamic equation of motion in the joint space is:

MðqÞ ��qþ Cðq; �qÞ þ Bðq; �qÞ þGðqÞ ¼ ttt ð1Þ
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where ttt 2 <n is the vector of applied joint torques, q
2 <n is the vector of joint positions, M 2 <n�n is the
inertia matrix, C 2 <n is the vector of Coriolis and
centrifugal torques, B 2 <n is the vector of torques
due to the friction action on the robot joints and G 2 <n

is the vector of gravitational torques. When there is an
external force applied to the robot end effector, the
dynamic Eq. (1) becomes:

MðqÞ ��qþ Cðq; �qÞ þ Bðq; �qÞ þGðqÞ þ ttte ¼ ttt ð2Þ

where ttte 2 <n is the vector of forces/torques exerted on
the environment by the robot end effector expressed in
the robot joint space. This vector can be defined as:

ttte ¼ JT f ð3Þ

where JT 2 <n�n is the transpose of the Jacobian matrix
and f 2 <n is the vector of forces and torques exerted
on the environment by the robot end effector expressed
in Cartesian space. Thus, Eq. (3) may be written as:

ttte ¼ JTKJTΔu ð4Þ

where K 2 <n�n is the matrix of stiffness coefficients
and Δu 2 <n is the vector of correction of displace-
ments and orientations in the Cartesian space.

Traditionally, force/motion control systems applied to a
robot manipulator have some end-effector motion directions
controlled in motion and others controlled in force. In the
proposed hybrid controller, all directions (along x, y and z)
are controlled in motion (internal control loop) and some
directions in force (external control loop). Contact forces
and torques (between the robot tool and the robot working
environments) are acquired from a force/torque (F/T) sensor

Table 1 Representation of the rule base
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which is between the robot wrist and the tool. The external
control loop processes the acquired information using a
fuzzy-PI control system and sends end-effector position/-
orientation displacement corrections (Δμ) to the internal
control loop (Fig. 1). The pre-programmed robot paths (nom-
inal data) are then adjusted through the direct control of the

servomotors of the robot. In Fig. 1, q
0
k is the vector of joint

positions in an instant of time previous to the current time.

3.2 Force controller

The proposed force controller associates PI control and
fuzzy logic, a fuzzy logic controller type Mamdani [24].
The PI controller has good performance when applied in

practical situations. A controller with derivative factor could
help to decrease the correction time, but it is very sensitive
to noise. With regard to fuzzy, the controller type Mamdani
is easy to implement and does not need a rigorous mathe-
matical model of the system in study. Other types of fuzzy
controller can require more rigorous mathematical models,
for example the T-S controllers [29–34].

3.2.1 Fuzzy control architecture

The controller input variables are the force/torque error e
and the change of the error de:

ek ¼ fdk � fek ð5Þ
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dek ¼ ek � ek�1 ð6Þ

where fe is the actual force/torque and fd is the desired force/
torque (set points).

3.2.2 Fuzzy-PI

From the conventional PI control algorithm, the robot dis-
placement u can be computed as:

uðtÞ ¼ KP eðtÞ þKI

Z
eðtÞdt ð7Þ

where Kp and KI are coefficient constants. This can be
represented in a discrete version:

uk ¼ uk�1 þΔuk ð8Þ

Δuk ¼ KP dek þKI ek ð9Þ

If e and de are fuzzy variables, Eqs. (8) and (9) become a
fuzzy control algorithm. A practical implementation of the
proposed fuzzy-PI concept is in Fig. 2. Finally, the centre of
area method was selected to defuzzify the output fuzzy set
inferred by the controller:

ΔU ¼
Pn

i¼1 μi ΔUiPn
i¼1 μi

ð10Þ

where μi is the membership function which takes values in
the range [0, 1]. A decision maker S, S 2 <n�n, establishes
the end-effector directions to control. When all directions
are controlled in force and motion, the S matrix becomes the
identity matrix.

3.2.3 Knowledge base

Each control variable is normalized into seven linguistic
labels: positive large (PL), positive medium (PM), positive
small (PS), zero (ZR), negative large (NL), negative medi-
um (NM) and negative small (NS). The grade of each label
is described by a fuzzy set. The membership function is in
Fig. 3. The well-known PI-like fuzzy rule base suggested by
MacVicar-Whelan [35] is applied in this study (Table 1).

3.2.4 Tuning strategy

The system can be adjusted to different contact conditions
by tuning the scaling factors KP, KI and KX according to
the characteristics of the environment in study. Lin and
Huang propose an adjustment where the scaling factors
are dynamic and thus they are adjusted at the same time
the task occurs [21]. Also, different tables of rules can be

used accordingly the task to be performed and the mate-
rials in contact involved in the task [20]. In this paper,
the scaling factors are set to appropriate constant values,
achieved by trial and error.

4 Experiments

The effectiveness of the proposed approach was evaluated in
two real-world experiments involving contact in PUEs. In
both experiments, the robot is programmed with nominal
data from CAD drawings and the external control loop is
tested with a PI and a fuzzy-PI controller (Fig. 4).

In the first experiment, the robot is programmed to manip-
ulate plastic cups. A “foreign” object (a hammer) is introduced
into the robot working environment, forcing it to become a
PUE (Fig. 5). This means that the nominal paths will drive the
robot end effector (with the plastic cup attached) to collide
with the hammer. In this situation, when contact between the
plastic cup and the hammer begins, the force/motion control
system assumes the robot control, adjusting the end effector to
the PUE and maintaining a given value of contact force (10 N)
along the z axis and 0 N along the x axis.
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In the second experiment, the robot is programmed to be
moved from a point to another in a straight path and main-
taining contact with the workpiece (Fig. 6). In practice,
since the contact surface of the workpiece is irregular and
there are always calibration errors, it is impossible to prop-
erly perform the task described above without force/motion
control. The force/motion control system assumes the robot
control maintaining a given value of contact force (30 N)
along the z axis.

4.1 Results and discussion

For the first experiment, all tests showed similar force
control results to those shown in Fig. 7 using a fuzzy-PI
controller and those shown in Fig. 8 using a PI controller.
Both systems provide acceptable results since the robot
adapts to the PUE avoiding excessive contact forces. How-
ever, the fuzzy-PI controller performs better than the PI
controller because the latter has a large overshoot and needs
more time to stabilize (Fig. 8).

Results for the second experiment are shown in Fig. 9
when using a fuzzy-PI controller and in Fig. 10 when using
a PI controller. The fluctuation in the controlled forces along
the z axis is due to the roughness of the contact surface.

Nevertheless, these forces are all around the set point, 30 N.
The PI controller has a better resolution (for small disturbances)
than the fuzzy-PI controller. On the other hand, it presents a
greater overshoot at the beginning of the convergence to the set
point (Fig. 10). Since both systems (controllers) have similar
results, a third experiment was done to ascertain the best
solution. This experiment is similar to the second experiment
but applying force/motion control along the x axis and the z
axis, with set point forces of 6 and 30 N, respectively. The
results are in Figs. 11 and 12. In this context, results obtained
along the z axis are similar to those in the second experiment.
For the forces controlled along the x axis, it can be stated that
the controller behaved the sameway as for the control along the
z axis. In summary, we cannot say that one controller is better
than the other. The results obtained are in line with similar
studies in the field that applies fuzzy reasoning to solve force/-
motion control problems [20–23].

5 Conclusions

This paper presented a hybrid force/motion control system
to increase robot autonomy. The system proved to be a
valuable tool to help robots to adapt to PUEs, especially
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when contact exists. The external control loop of the hybrid
controller was tested with a PI and a fuzzy-PI controller.
Real-world experiments involving contact in PUEs demon-
strated that we cannot say that the fuzzy-PI controller is
better than the PI controller. Both showed similar behav-
iours, with some disturbance around the set points. Another
conclusion that can be drawn from experiments is that the
proposed system only works properly if the data transfer
between the F/T sensor and the robot controller is done in
real time. Future work will focus on performing more real-
world experiments with different materials in contact.
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