
Robotics and Autonomous Systems () –

Contents lists available at SciVerse ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Direct off-line robot programming via a common CAD package
Pedro Neto ∗, Nuno Mendes
CEMUC, Department of Mechanical Engineering - POLO II, University of Coimbra, 3030-708 Coimbra, Portugal

h i g h l i g h t s

• A novel CAD-based off-line robot programming solution.
• Robot programs are automatically generated from a CAD drawing.
• Robot cell design and robot programming are embedded in the same interface.
• The system is intuitive to use and presents a short learning curve.

a r t i c l e i n f o

Article history:
Received 13 July 2012
Received in revised form
30 January 2013
Accepted 8 February 2013
Available online xxxx

Keywords:
Intuitive robot programming
CAD
Off-line programming

a b s t r a c t

This paper focuses on intuitive and direct off-line robot programming from a CAD drawing running on
a common 3-D CAD package. It explores the most suitable way to represent robot motion in a CAD
drawing, how to automatically extract such motion data from the drawing, make the mapping of data
from the virtual (CAD model) to the real environment and the process of automatic generation of robot
paths/programs. In summary, this study aims to present a novel CAD-based robot programming system
accessible to anyone with basic knowledge of CAD and robotics. Experiments on different manipulation
tasks show the effectiveness and versatility of the proposed approach.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Robot programming through the conventional teaching process
(using the teach pendant) is often a tedious and time-consuming
task that demands significant technical expertise. Many compa-
nies, especially small and medium-sized enterprises (SMEs), are
not using robots and/or other automatic systems in their facili-
ties because the configuration and programming process of this
type of equipment is time-consuming and requires workers with
knowledge in the field [1]. Nevertheless, most industrial robots are
still programmed using the conventional teaching process. Thus,
new and more intuitive approaches to robot programming are re-
quired. In fact, teach pendants are not intuitive to use [2–5] and
some authors have presented solutions to this problem. This may
involve the introduction ofmechanisms for collision avoidance and
automatic path planning in the robot teaching process [3,4]. Off-
line robot programming (OLP) has increased in popularity over
the years, with advantages and disadvantages over lead-through
methods (see Section 2) [6–8].

Drawing inspiration from the way humans communicate with
each other, this paper explores and studies methodologies that

∗ Corresponding author. Tel.: +351 239 790 700.
E-mail address: pedro.neto@dem.uc.pt (P. Neto).

can help robot users to interact with a robot in an intuitive way,
with a high-level of abstraction from the robot specific language.
In fact, a human being can be taught in several different ways, for
example, through drawings. As an example, it is very common to
see a human being explaining something to another human being
with base on a CAD drawing. In practice, CAD data have been used
in robot programming with some degree of reliability since the
1980s; see Section 2.1.

In this paper, we present a novel system for CAD-based OLP,
Fig. 1. Robot programs are directly generated from a 3-D CAD
drawing running on a commonly available 3-D CAD package
and not from commercial OLP or CAM software. The aim is to
automatically generate robot motion sequences (programs) from
a graphical description of the robot paths over a 3-D CAD model
of a given robotic cell. A unified treatment of CAD and robot
programming methods may involve very important advances in
versatility and autonomy of the platform; in other words, product
design and robot programming can be integrated seamlessly. It is
explored themost suitable way to represent robotmotion in a CAD
drawing, how to automatically extract such motion data from the
drawing, make the mapping of data from the virtual (CAD model)
to the real environment and the process of automatic generation
of robot paths/programs. A major goal is to create a CAD-based
OLP system accessible to anyone with basic knowledge of CAD and
robotics. Since today’s CAD packages are rather widespread, are

0921-8890/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.robot.2013.02.005

http://dx.doi.org/10.1016/j.robot.2013.02.005
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
mailto:pedro.neto@dem.uc.pt
http://dx.doi.org/10.1016/j.robot.2013.02.005

2 P. Neto, N. Mendes / Robotics and Autonomous Systems () –

Fig. 1. Overview of the proposed approach.

relatively easy to use and have affordable prices, this can open
the door to new robot users and thus contribute to increase in
the number of existing robots in companies. Some algorithms
with running code are presented, allowing readers to replicate
and improve the work done so far. Experiments on different
manipulation tasks show the effectiveness and versatility of the
proposed approach.

2. Off-line robot programming

OLP is not a ‘‘fully automatic’’ programming process, it may
involve manual editing of robot code and/or the definition of the
robot programs bymeans of computer software that simulates the
real robotic scenario. Some major advantages of OLP include the
following:

– Robot programming without stopping/disturbing robot pro-
duction, Fig. 2. Robots can be programmed before installation
and stay in production while being re-programmed for a new
task [6]. This means that robot programming can be carried out
in parallel with robot production (production breaks are short-
ened).

– The programming efforts are moved from the robot operator in
theworkshop (factory floor) to the engineer/programmer in the
office.

– Increase of work safety. During the programming process the
user is not in the robot working area.

– Robot programs can be tested using simulation tools. This is
very important to anticipate the real robot behavior and in this
way to optimize working processes.

On the other hand, some disadvantages can be pointed out:

– Relatively high initial investment in software and workers’
training. This investment is difficult to justify for most SMEs.

– Error associated with robot calibration. Robot calibration re-
quires highly expensive measurement hardware, software and
technical knowledge.

– The task calibration process requires experienced operators. A
rough task calibration can lead to tremendous inaccuracies dur-
ing robot operation.

– Robot programs created off-line need to be tested in the real
robot in order to verify if they run correctly. In this context, cal-
ibration errors can lead to robot crashes.

Fig. 2. OLP concept.

– Process information is required in advance.
– OLP methods rely on accurate modeling of the robotic cell.

Software packages dedicated to OLP are usually called OLP soft-
ware or computer-aided robotics (CAR) software. Some OLP pack-
ages are able to operate with robots from different manufacturers
(generic OLP packages). Three of the most common generic OLP
packages are Delmia from Dassault Systémes, RobCAD from Techno-
matix Technologies and Robotmaster from Jabez Technologies. These
software packages provide a set of modeling and simulation tools
capable to represent graphically a robot manipulator and its atten-
dant equipment, generate programs, and hence simulate a given
robotic task [7,8]. On the other hand, almost every robot manufac-
turer has its ownOLP software. Examples are KUKA.Sim from KUKA,
RobotStudio from ABB Robotics and MotoSim from Motoman. Early
versions of OLP software were based on simple wireframe models
of the robot’s kinematics. However, in recent years, robot simula-
tion techniques have seen a rise in realism and popularity, possi-
bly coinciding with the advancement of computing and graphical
animation technologies. OLP packages of today are more graphi-
cally powerful, modular (with modules for specific processes such
as coating and welding) and standard (with capacity for example
to import standard CAD formats).

All of these capabilities come at a cost. A license for OLP soft-
ware can cost thousands of Euros, an investment difficult to justify
for most SMEs. Advantages of OLP software are tempered by some
limitations in existing systems. In fact, they are not intuitive to use

P. Neto, N. Mendes / Robotics and Autonomous Systems () – 3

and can only be applied in situations where the robot surrounding
environment is known a priori and well modeled [9]. In addition,
high absolute positioning accuracy can only be achieved with cor-
rectly calibrated robots [10–12]. If the robot poses (positions and
orientations) are manually taught, repeatability is an important
factor and positioning accuracy is not [12]. On the contrary, in OLP,
positioning accuracy is a factor of crucial importance because robot
paths are defined in a virtual space with respect to a given coordi-
nate system. The positioning accuracy of an industrial robot varies
with the manufacturer, age and robot type. The error magnitude
can be as low as a tenth of a millimetre or as high as several cen-
timetres. An appropriate calibration can reduce it to less than a
millimetre. The international standard ISO 9283 recommends pro-
cedures for a correct calibration process. Different hardware and
techniques have been applied in robot calibration, for example
the ROSY system that uses a calibration ball and digital cameras
to calculate kinematic errors and the resulting correction values
(compensatory parameters) [10]. Another study shows how the
accuracy of an ABB IRB 1600 industrial robot is improved using a
29-parameter calibration model [11]. Measures are acquired with
a laser tracker.Most robotmanufacturers provide robot calibration
services.

2.1. CAD-based robot programming

In recent years, CAD technology has become economically at-
tractive and easy to work with. Today, millions of SMEs worldwide
are using CAD technology to design andmodel their products. Nev-
ertheless, the CAD industry has to face significant technical chal-
lenges in future [13].

Already in the 1980s, CAD was seen as a technology that could
help in the development of robotics [14]. Since then, a variety
of research has been conducted in the field of CAD-based robot
planning and programming. Over the years some researchers have
explored CAD technology trying to extend its capabilities to the
robotics field. Today, it is possible to extract information from
CAD drawings/files to generate robot paths/programs for many
different applications [15–18].

A series of studies have been conducted using CAD as an
interface between robots and humans. Diverse solutions have been
proposed for the processes of spray painting and coating. A review
of CAD-based robot path planning for spray painting is presented
by Chen et al. [19]. A CAD-guided robot path generator is proposed
for the process of spray painting of compound surfaces commonly
seen in automotivemanufacturing [20]. Arikan and Balkan propose
a CAD-based robotic system addressing the spray painting process
of curved surfaces (OLP and simulation) [21] and Chen et al. a
CAD-based automated robot trajectory planning system for spray
painting of free-form surfaces [22].

An important study in the field of CAD-based robotics presents a
method to generate 3-D robotworking paths for a robotic adhesive
spray system for shoe outsoles and uppers [23]. An example of a
novel process that benefits from robots and CAD versatility is the
so-called incremental forming process of metal sheets. Without
using any costly form, metal sheets are clamped in a rigid frame
and the robot produces a given 3-D contour by guiding a tool
equipped with a high-frequency oscillating stamp over the metal
surface. The robot’s trajectories are computed from the CADmodel
on the basis of specific material models. Prototype panels or
customized car panels can be economically produced using this
method [24]. Pulkkinen et al. present a robot programming concept
for applications where metal profiles are processed by robots
and only a 2-D geometrical representation of the workpiece is
available [25].

Nagata et al. propose a robotic sanding platform where
robot paths are generated by CAD/CAM software [26]. A robotic

CAD/CAM system that allows industrial robots to move along CL
data without using any robot language is presented by Nagata
et al. [27,28]. A recent study discusses robot path generation from
CAM software for rapid prototyping applications [29]. Feng-yun
and Tian-sheng present a robot path generator for a polishing pro-
cess where CL data are generated from the postprocessor of a
CAD system [30]. Other previous studies report the development
of robotic systems for rapid prototyping in which cutting data
are extracted from CAD drawings [31,32]. A CAD-based system to
generate deburring paths from CAD data is proposed by Murphy
et al. [33]. A method for manufacturing prototype castings using a
robot-based system in which manufacturing paths are generated
from CAM software is proposed by Sallinen and Sirviö [34]. In a
different kind of application, CAD drawings are used for robot nav-
igation purposes, namely for large scale path planning [35].

Aswehave seen above, a variety of research has been conducted
in the fields of CAD-, CAM- and VRML-based OLP. However, none
of the studies so far has an effective solution for an intuitive and
low-cost OLP solution using raw CAD data and directly interfacing
with a commercial CAD package. Research studies in this area
have produced great results, some of them already implemented
in industry, but limited to a specific industrial process (welding,
painting, etc.). Even though a variety of approaches has been
presented, a cost-effective and standard solution has not been
established yet.

3. CAD-based approach

3.1. CAD packages

CAD technology has become economically attractive and easy
to work with so that today there are millions of companies world-
wide using it to design and model their products. While the prices
of CAD packages have decreased, their features and functionalities
have been upgraded, with improved and simplified user interfaces,
user-oriented functionalities, automatic design of standard prod-
ucts, etc. Nowadays, most CAD packages provide a wide range of
associated features (integrated modules or standalone solutions)
that not only help in the effective design process, but also help in
other tasks such as mechanical simulation and the physical simu-
lation of dynamic processes. Robot programming and simulation
has been seen as another feature that CAD packages can integrate.

Autodesk Inventor, which is one of the most common 3-D CAD
packages of today, was chosen to serve as interface with the
proposed solution. It incorporates all the functionalities of modern
CAD packages, design, visualization, simulation, and user-friendly
interface, and provides a complete application programming
interface (API) for customization purposes, allowing developers
to customize their CAD-based applications [36]. In terms of file
formats, besides all the standard formats, Autodesk Inventor has
proprietary file formats to define single part model files (ipt file)
and assembly model files (iam file).

3.2. Extracting data from CAD drawings

The base of the proposed CAD-based OLP platform is the ability
to automatically extract robot motion data from CAD drawings
running on Autodesk Inventor. The Autodesk Inventor API is used
for that purpose. It exposes the Inventor’s functionalities in an
object-oriented manner using a technology from Microsoft called
Automation. In this way, developers can interact with Autodesk
Inventor using current programming languages such as Visual
Basic (VB), Visual C# and Visual C++. The API allows developers to
create a software interface that performs the same type (kind) of
operations that a user can perform when using Autodesk Inventor
interactively. Summarizing, the API provides a set of routines that

4 P. Neto, N. Mendes / Robotics and Autonomous Systems () –

Fig. 3. Accessing the Autodesk Inventor’s API.

may be used to build a software interface based on resources from
Autodesk Inventor.

There are different ways to access the Autodesk Inventor API,
Fig. 3. The white boxes represent components provided by the
API (Autodesk Inventor and Apprentice Server) and the gray boxes
represent programswritten by developers.When one box encloses
another box, this is an indication that the enclosed box is running
in the same process as the box which is enclosing it. Thus, an
‘‘in-process’’ program will run significantly faster than a program
running out of the process.

In the context of this paper, a standalone application is pro-
posed to access the API and subsequently Inventor data. This choice
was due to the necessity to integrate in the main application not
only the process of interaction with CAD but also other software
components for other tasks, for example, robot communications.

The API provided by Autodesk has a number of functionalities
that were explored to be used in robotics. As an example, it is

possible through a standalone application to open Autodesk Inven-
tor in visible mode, Fig. 4, and open an Inventor document, Fig. 5.
The properties of the document can then be easily accessed, Fig. 5.

There are a great number of data that can be extracted from a
CAD drawing. The question is: What data are required to achieve
our goal (OLP)? In practice,weneed to have robotmotion fromCAD
drawings, i.e., a sequence of target points representing the robot
end-effector poses with respect to a known coordinate system (in
Cartesian space). Thus, given the capacity of the Autodesk Inventor
API, it was established that we need to extract positions and
orientations of objects in 3-D space from proper CAD drawings
representing a given robotic cell.

1. Positions—positional data can be acquired from a CAD drawing
in different ways, for example, acquiring WorkPoints positional
data (points that can be placed in the CAD drawing—see
Section 3.3), Fig. 6. In other situations, positional data come
from the points that characterize each one of the different lines
representing virtual robot paths in a CAD drawing, Fig. 7. For
example, in a specific situation, if the robot paths assume the
geometry of a spline in the CAD drawing, the API provides all
the points necessary to define such geometry. All these data are
defined in relation to the origin of the CAD assembly model of
the robotic cell.

2. Orientations—the API provides information about the transfor-
mation matrix (or homogeneous transform) of each part model
represented in a CAD assembly model, Fig. 8. The transformation
matrix contains the rotation matrix and the position of the ori-
gin of the part model to which it refers, both in relation to the
origin of the CAD assembly model of the robotic cell.

3.3. CAD models

The process of creating the CAD part models that compose
the CAD assembly model of the robotic cell should respect some
rules. Since it was previously established that we need to have

Fig. 4. Opening Autodesk Inventor (coded in VB).

Fig. 5. Opening an Inventor document and extracting their properties (coded in VB).

P. Neto, N. Mendes / Robotics and Autonomous Systems () – 5

Fig. 6. Extracting data from a selectedWorkPoint (coded in VB).

Fig. 7. Extracting data from a selected virtual line (coded in VB).

Fig. 8. Extracting the transformation matrix of a selected item (coded in VB).

represented in the CAD assembly model of the robotic cell all the
required robot paths (end-effector poses), it becomes necessary to

study the most suitable way to have that information represented
in CAD drawings. This can be achieved in two different ways.

6 P. Neto, N. Mendes / Robotics and Autonomous Systems () –

Fig. 9. Simplified tool models defining the robot end-effector pose in each path
segment.

1. Introducing extra robot tool (end-effector) models within the
assembly model. These models represent the desired robot end-
effector pose in each segment of the path, Fig. 9. Positional data
are achieved by placing aWorkPoint attached to any part of the
tool model, Fig. 10. The WorkPoint data (x, y, z) are provided
by the API in relation to the origin of the CAD assembly model.
Orientation data are achieved from the tool models orientation
in the drawing (transformation matrix).

2. Drawing lines (in the assembly model) representing the desired
robot path (positional data) and defining the robot end-effector
orientation by placing simplified tool models along the path
lines (in each segment of the path), as in the above topic, Fig. 9.

The CAD assembly model does not need to accurately represent
the real cell in all its aspects. On the contrary, it can be a simplified
model containing all the necessary/important information for the
programming process (target points and relations between them).
As an example, the robot tool length, robot path positions and
relative positioning of CAD models have to accurately represent
the real environment. However, the models appearance does not
need to be exactly the same as the real objects. It means that,
for example, chamfers or rounded edges are expendable. These
simplifications allow us to speed up the modeling process. Fig. 11
shows a real robot tool (a) and two CAD models of that tool, (b)
and (c), with the same length l. These two models were created
with different levels of detail.

1. Model (b) was created with more detail than model (c). It
represents more accurately the real tool, with advantages in
terms of visualization. Nevertheless, the process of drawing this
model is more time consuming than drawing model (c);

2. Model (c) is a simpler version but accurate at the same time in
terms of total length of the tool. It can be drawn in seconds and
used where only the length of the tool is a factor of importance.

It is important to note that the best model is the simplest model
that still serves its purpose.

3.3.1. Process/path planning
The process/path planning task occurs during the construction

of the CAD assemblymodel, inwhich the user is planning in advance
the ‘‘best’’ process parameters and paths. Depending on the type
and complexity of the process in study, the planning task can
include several factors.

1. Models selection/construction and definition of the layout of
the cell. Some CAD models can be accessed from libraries

Fig. 10. A WorkPoint attached to a tool model in a location where the tool is
connected to the robot wrist.

provided bymanufacturers (robots and other peripheral equip-
ment).

2. Robot motion. Robot motion can be indirectly defined by plac-
ing simplified tool models and/or virtual paths within the CAD
assembly model. The desired movement type (linear, circular or
spline) is defined by the geometry of the virtual paths or in the
software interface.

3. Operation sequences. Robot operation sequences are defined
by the name of the tool models. The first five characters of the
name of a tool model should be ‘‘step_’’ (simple robot motion).
The sixth character and following should be a number defining
the ordering sequence for robotmotion. Following the sequence
number the tool name can have or not a character type letter in-
dicating a specific robot operation, for example, ‘‘step_1A’’ can
indicate robot motion plus the activation of a digital output of
the robot.

4. Collisions. Collisions should be predicted by the designer during
the creation of the CAD model of the cell. The designer should
ensure that there are no collisions between the robot and other
objectswithin theworkspace. Fig. 12 shows aCADdrawingwith
two tool models (initial and target pose) and an obstacle. If the
robot end-effector is linearly moved from the initial to the tar-
get pose a collision occurs. The designer should anticipate this
situation and introduce into the drawing ‘‘intermediate’’ tool
models to allow the robot to avoid the obstacle, Fig. 13.

5. Grasping and re-grasping/repositioning. These are common sit-
uations in industrial robotics, especially in pure manipulation
tasks. Many times, in order to properly perform a task, there
is a need for re-grasping or repositioning a given workpiece.
Fig. 14 shows a re-grasping process in which a grasping loca-
tion is changed from an initial pose defined by the tool model
step_1 to a target pose defined by step_5. Moreover, during the
planning phase, it has to be ensured that the robot is operating
with valid tool locations, including valid contact conditions be-
tween the gripper and the workpiece. Note that as in Figs. 13
and 14 some ‘‘intermediate’’ tool models are used to avoid col-
lisions during the re-grasping process.

A robot simulation system can be a valuable help in this planning
phase, helping us to visualize the robotic process (robot motion,
possible collisions and the re-grasping operations) and detect
existing robot kinematic singularities or robot joint limits.

P. Neto, N. Mendes / Robotics and Autonomous Systems () – 7

Fig. 11. Real robot tool (a), and simplified models (b) and (c).

Fig. 12. Collision.

Fig. 13. Avoiding an obstacle.

8 P. Neto, N. Mendes / Robotics and Autonomous Systems () –

Fig. 14. Re-grasping.

3.4. Mapping and calibration

Many times it is necessary to express the same quantity in
relation to different coordinate systems, i.e., change descriptions
from frame to frame, mapping. These capabilities can be used for
the task calibration process, making the CAD model of the cell in
study to match with the real robotic cell. All robot end-effector
positions and orientations extracted from CAD have to be known
with respect to one or more reference frames known a priori in
the space of the real robot. These frames have to be defined within
the CAD drawing of the cell by placing invisible part models with
the desired poses into the CAD assembly model (note that each
part model has a frame associated). Then, the real robot is taught
about that frame(s)’ pose in the real environment through the
conventionalway, using the teach pendant. Essentially, the process
consists in the definition of one or more frames within the CAD
drawing of the cell and the corresponding frame(s) in the robot
controller. This makes the task calibration process a relatively
simple and non-time consuming process. Nevertheless, complex
robotic scenarios can require the definition of a significant number
of different frames. In this case, the task calibration process can
be lengthy and prone to error. This is because the user has to
remember the pose of each frame previously defined within the
CAD drawing and at the same time to define such frames in the
real scenario.

As mentioned before, the Autodesk Inventor API provides all the
information (transformation matrices, WorkPoints and path lines
data) with respect to the origin of the CAD assembly model, here
defined by frame {U}, Fig. 15. Frame {B} is defined in the robot
controller during the calibration process (in the real robot), and
at the same time the API provides the transformation matrix of
{B} relative to {U}, UB T. This means that frame {B} ‘‘makes the link’’
between the virtual and real world. Note that, asmentioned above,
it is possible to define more than one frame if necessary, as the
process is similar.

Since Autodesk Inventor considers the tool models (with a
WorkPoint attached) and the path lines as a constituent of a single

part model within in the CAD assembly model, the transformation
matrix (relative to {U}) of that single part model defines the pose
of tool models and path lines. For the general case presented in
Fig. 15 the path line is part of the table top model. The table top
model has the origin and orientation defined by {E}. However, it is
not necessary to know the orientation of the path lines because the
API gives all the necessary points to define the path lines relative
to {U}, for example the initial path point UPini, Fig. 15. Thus, it is
necessary to achieve the path line points relative to frame {B}. The
same for the tool models in which we need to have orientations
and WorkPoint positional data relative to {B}.

The generic tool models that incorporate {C} and {D}, Fig. 15,
help to define the end-effector pose in each path segment, as well
as theWorkPoint positions (if they have aWorkPoint attached). The
API provides the transformation matrix of these models relative to
{U}, UC T and U

DT. Given our purpose (robot programming), we wish
to express {C} and {D} in terms of {B}, BCT and B

DT. For
B
CT we have

that

B
CT=

B
U T+

U
C T. (1)

To find B
UT, wemust compute the rotationmatrix that defines frame

{U} relative to {B}, B
UR, and the vector that locates the origin of

frame {U} relative to {B}, BPUorg :

B
UT =


B
UR

0 0 0

 BPUorg
1


(2)

Let us consider a generic vector/point defined in {U}, UP. If we
wish to express this point in space in terms of frame {B} we must
compute

BP=
B
U RUP+

B PUorg . (3)

Given the characteristics of a rotation matrix, BUR=
U
B RT , and as we

know U
B T, there follows the computation of BPUorg . From the process

P. Neto, N. Mendes / Robotics and Autonomous Systems () – 9

Fig. 15. Coordinate frames.

of inverting a transform we have that

B
UT =


U
B R

T

0 0 0

 −
U
B R

T UPBorg
1


(4)

Thus, from (2) and (4):
BPUorg = −

U
B RT UPBorg . (5)

At this stage, from (1) and (4) we can compute B
CT. The same

methodology can be applied to achieve B
DT and any other transfor-

mation. This means that all positions and orientations extracted
from CAD can be referred with respect to the reference frame(s)
defined in the real environment at the moment of the calibration
process.

3.5. X–Y–Z Euler angles

After having obtained from CAD drawings the rotationmatrices
defining robot end-effector orientations in relation to a given
frame, such matrices are transformed into effective end-effector
rotations, usually Euler angles or quaternions.

The description of the orientation of a generic frame {B} with
respect to a generic frame {A} in the form of X–Y–Z Euler angles
(α, β, γ) can be represented by a rotation matrix composed of
the multiplication of the rotation matrices around each angle:
A
BRotxyz = Rotx(α) Roty(β) Rotz(γ). It is now possible to compute
the X–Y–Z Euler angles. If β ≠ ± (π/2):

β = A tan 2

r1,3,


r21,1 + r21,2


(6)

α = A tan 2

 r2,3

−


r21,1 + r21,2

,
r3,3

r21,1 + r21,2

 (7)

γ = A tan 2

 r1,2

−


r21,1 + r21,2

,
r1,1

r21,1 + r21,2

 (8)

where ra,b are the elements of A
BRotxyz and A tan 2(y, x) is a two

argument arc tangent function. When β = ± (π/2), the process
to compute Euler angles is more complex. In this situation both
the x and z axes are aligned with each other and one degree of
freedom is lost. This phenomenon is mathematically unsolvable
and is known as gimbal lock. In this scenario, α and γ cannot be
calculated separately but together:

α ± γ = A tan 2

r3,2, r2,2


. (9)

The gimbal lock phenomenon does not make Euler angles ‘‘wrong’’
but makes them unsuited for some practical applications. Some
methods have been proposed to deal with the gimbal lock phe-
nomenon, for example, solutions based on the representation of
rigid body orientation through quaternions [37]. However, some
robot manufacturers force the use of Euler angles so that in these
cases the option for quaternions is ruled out. Pollard et al. propose
to locate regions near gimbal lock and compute a restricted degree
of freedom solution within those regions [38]. In practice, a typical
approach is to set an angle equal to zero and compute the remain-
ing angle. In this case, if β = (π/2), and assuming that α = 0, we
have

γ = A tan 2

r2,1, −r3,1


. (10)

On contrary, if β = −(π/2) and assuming that α = 0, we have

γ = A tan 2

r2,1, r3,1


. (11)

3.6. Interpolation for end-effector orientations

When an industrial robot is performing a pre-programmed
movement and this one requires abrupt end-effector orientation
changes, we must take special care because it can come into a sit-
uation where no one has total control over the end-effector orien-
tation. In other words, we have no control over the interpolation
made by the robot controller between two given poses. This is
particularly true when robot programs are generated off-line. In

10 P. Neto, N. Mendes / Robotics and Autonomous Systems () –

Fig. 16. End-effector poses: (a) before interpolation and (b) after interpolation.

some situations this could be a major problem, leading to the ap-
pearance of defects in the work produced by the robot [39]. The
proposed solution to circumvent this problem is based on the im-
plementation of linear smooth interpolation of end-effector po-
sitions and orientations [30]. The process involves the following
steps:

1. Identification of risk areas. This is achieved by analyzing the
CAD drawing of the cell and manually defining those areas in
the drawing (abrupt end-effector orientation changes).

2. Discretization of the risk robot path in equally spaced intervals.
3. Computation of end-effector orientations for each interpolated

path point. The new path is smoother than the initial, Fig. 16.

For the profile shown in Fig. 16, interpolation was divided in
two sections S1 ∈


Pj, Pj+1


and S2 ∈


Pj+1, Pj+2


. The calculations

are presented for section S1 but for other sections the procedure is
similar. For a sampling width ∆t the interpolated position r(k) =

(rx, ry, rz)T is

ri(k) = ri(0) + vi(k) k∆t,

(i = x, y, z)
k = 1, . . . , n − 1 (12)

where vi(k) is a directional velocity profile and n represents the
number of interpolated points.

A spherical linear interpolation (SLERP) algorithm was imple-
mented for the purpose of quaternion interpolation. Given two
known unit quaternions, Q0 (from Pj) and Qn (from Pj+1) with pa-
rameter k moving from 1 to n − 1, the interpolated end-effector
orientation Qk can be obtained as follows:

Qk =
sin


1 −

k−1
n−1


θ


sin θ
Q0 +

sin
 k−1
n−1θ


sin θ

Qn,

k = 1, . . . , n − 1 (13)

where

θ = cos−1 (Q0 · Qn) . (14)

This method for quaternion interpolation is also used when we
want to interpolate Euler angles, simply by transforming Euler
angles into quaternions and vice versa.

3.7. Generation of robot programs

The search for new and more intuitive methods to program
machines has led to the emergence of techniques to generate ma-
chine code. In the last few decades, several code generation tech-
niques have been developed. The most prominent example is the
use of commercial CAD/CAM systems to generate reliable CL data
for CNCmachining [40]. CNC tool paths can also be generated from

Fig. 17. The different phases of a manipulation task.

standard CAD formants [41–43]. Nevertheless, these systems to
generate code tend to have some drawbacks such as their ability to
generalize from different situations and respond to unseen prob-
lems. During the elaboration of an algorithm to generate code, the
keyword is ‘‘generalize’’ and never ‘‘particularize’’, the algorithm
must be prepared to cover awide range of variations in the process.
For particular applications with a limited and well known number
of process variations this kind of algorithms presents acceptable
performance [44].

Robot controller specific languages have seen only minor ad-
vances in the last few years. Some authors have devoted atten-
tion to create methodologies capable to generalize robot programs
around a task but which at the same time can be customized as
necessary [45]. An operation can be customized in terms of type
of robot operation or shape of the workpiece. Intrinsically, this al-
lows us to profit from previously similar work, incorporating the
programmers’ experience and process knowledge [46]. Thus, the
time to create robot programs for related products/tasks can be
reduced and non-specialists can create robot programs by them-
selves. These systems follow the same logic as the well known
macros or scripts in the world of computer science. Translators
for robot programming languages have also been matter of con-
cern [47], as well as the development of robotic system that oper-
ates without using a specific robot language [27,28].

In this paper, we propose an algorithm to automatically gen-
erate robot programs with information extracted from CAD draw-
ings. The way the process to generate robot code is applied differs
with the robotic task under study. Nevertheless, there is a common
point in all robot programs. It means that since robots usually per-
form manipulation tasks, the process to generate a robot program
does not differ greatly from application to application, containing
common tasks like gripping, moving and placing, Fig. 17.

The automatic generation of a robot program is no more than
writing robot commands in a text file, line by line. In this paper,
this process ismanaged by the software interface (Section 3.8) that
extracts data from CAD drawings, interprets that data and finally
generates robot programs. The process to generate a robot program
is divided into two distinct phases:
1. Definition and parameterization of robot end-effector poses,

frames, tools and constants. The algorithm in Fig. 18 summa-
rizes the process of data acquisition from tool models and/or
path lines and the generation of robot code. The following equa-
tion represents a common definition of a robot pose in a robot
program:

P = x, y, z,

α, β, γ −→ Euler angles
qw, qx, qy, qz −→ Quaternions. (15)

In addition to robot poses, specific process and robot parame-
ters (coordinate systems, tools, etc.) are specified in this phase.
This information comes from the parameters introduced in the
software interface, for example, robot home position, number
of working cycles, approaching distances, etc.

P. Neto, N. Mendes / Robotics and Autonomous Systems () – 11

Fig. 18. Extracting data from CAD and generation of robot code.

2. Body of the program. A robot program contains predominantly
robot motion instructions: linear, joint, circular or spline robot
movement. These movement instructions respect the type of
motion established in the CAD drawing and/or the software
interface. For example, if a segment of a path is drawn as a
straight line, the generated codewill contain a robot instruction
that makes the robot end-effector move linearly in that path
segment. In this phase the algorithm also has to deal with
particular situations associated with each robotic task such as
the generation of IO commands to communicate with other
machines and the definition of approaching distances.

The proposed algorithm is able to generate robot programs for
Motoman robot controllers (INFORM language), Fig. 19. However,
as all robot programs are based on the sameprinciple, the proposed
algorithm can be adapted to generate code in other programming
languages.

3.8. Software interface

The developed software interface makes the link between the
user, the CAD package and the robot. The functionalities and global
architecture of the proposed software interface are schematically
shown in Fig. 20. This software interface runs under Microsoft
Windows operating systems (XP or above) and in any industrial or
personal computers with processing and graphical capacity to host
Autodesk Inventor, Fig. 21. It was mainly written in VB.

4. Experiments

The CAD-based OLP system was validated in two different
experimental setups, both representing practical scenarios of
application of robots (manipulation tasks). The first experiment
involves a robot manipulating objects from a location to another
one and the second experiment a robot transporting an object
between obstacles.

4.1. Experiment I

This experimental setup was designed to accomplish a simple
object manipulation task. Robot programs are generated from a
CAD assembly model of the robotic cell in study, Fig. 22, where

Fig. 19. A snippet of a robot program generated for aMotoman robot (INFORM).

simplified robot tool models represent the target poses for robot
motion (initial poses and target poses). The robot task from which
a robot program is generated consists in having the robot handling
three objects from an initial to a final pose, Fig. 23 [48].

4.2. Experiment II

In this experiment, robot programs are generated from a CAD
assemblymodel in which the virtual paths (positional data) are rep-
resented in the form of straight lines, arcs and splines. The end-
effector orientation is defined by placing tool models along the
above mentioned virtual paths. These models define the orienta-
tion of the robot end-effector in each segment of the path, Fig. 24.
The robot program generated from CAD is tested in a real scenario.
As shown in Fig. 25 the real robot performs the manipulation task
with success bypassing the obstacles without hitting them [49].

4.3. Results and discussion

The experiments demonstrated the versatility of the proposed
CAD-based OLP system. Robotic cell design and robot program-
ming are embedded in the same interface and work through the
same platform, Autodesk Inventor, without compatibility issues. In
terms of accuracy, as in the case of commercial OLP software, the
error that may exist comes from the robot and/or task calibration
process and inaccuracies in the construction of the CAD models.
In fact, error is always present, which may or may not be accept-
able, depending on their magnitude and application under consid-
eration. Often, task calibration errors arise from the little time and
attention devoted to the calibration process. This situation is in-
creasingly common as companies are constantly being asked to
change production for new products. The above is true for all the
robot programming and simulation systems based on virtual rep-
resentation of objects in space, OLP. It is also important to note
that after generating a robot program, it should be simulated in

12 P. Neto, N. Mendes / Robotics and Autonomous Systems () –

Autodesk
Inventor

Fig. 20. Functionalities and architecture.

Fig. 21. Graphical user interface of the developed software.

order to better visualize the robotic process (robot motion, possi-
ble collisions, the re-grasping operations, kinematic singularities,
robot joint limits). Moreover, in order to be cautious with respect
to possible errors, the robot programs generated off-line have to
be tested (and adjusted if necessary) in the real robot (in the shop
floor).

The proposed CAD-based HRI system is not the definitive
solution for OLP. Nevertheless, it is an original contribution to
the field, with pros and cons. The proposed system is limited
in some aspects, for example in the level of sophistication and
ability to generalize from particular situations. On the other hand,
the intuitiveness of use, short learning curve and the low-cost
nature of the system appear as positive aspects, making it more
accessible than common OLP software. All of these characteristics
are fundamental when the objective is to spread the utilization of
this kind of systems in SMEs or use it for educational and training
purposes.

5. Conclusions and future work

A novel CAD-based OLP platform has been presented. Robotic
cell design and OLP are embedded in the same interface and work

P. Neto, N. Mendes / Robotics and Autonomous Systems () – 13

Fig. 22. Two different perspectives of the CAD assembly model.

Fig. 23. Robot running the program generated from CAD.

through the same platform, a common commercial CAD package.
It was proposed a method to extract robot paths (positions and
orientations) from a CAD drawing of a given robotic cell. Such
data are then treated and transformed into robot programs. In
addition, the experiments showed that the proposed system is
intuitive to use and has a short learning curve, allowing user with

Fig. 24. CAD assembly model of the cell in study: with obstacles in invisible mode
(a) and in visible mode (b).

basic knowledge in robotics and CAD to create robot programs in
just few minutes. In terms of accuracy, the error that may exist
in the processes of OLP comes from inaccuracies in the robot/task
calibration processes inherent to OLP and from situations where
the CAD models do not reproduce properly the real robotic
environment.

There are someaspects of the proposedCAD-based solution that
can be improved in future. One aspect has to dowith the algorithm
to generate code; it has to bemore generalist, flexible and easier to

14 P. Neto, N. Mendes / Robotics and Autonomous Systems () –

Fig. 25. Robot running the program generated from CAD.

tune. An idea for future work is to have a graphical- or icon-based
interface to tune the algorithm to generate code in amore intuitive
way and independently of the robot language. The other aspect
has to do with the existing error in the process. External sensing
(force sensing for example) can help to deal with this situation by
increasing the accuracy of the processes, making it less susceptible
to error and simpler.

References

[1] S. Forge, C. Blackman, A helping hand for Europe: the competitive outlook for
the EU robotics industry, in: Publication Office of the European Union, 2010.

[2] L. Qi, D. Zhang, J. Zhang, J. Li, A lead-through robot programming approach
using a 6-DOF wire-based motion tracking device, in: Proceedings of the
2009 IEEE International Conference on Robotics and Biomimetics, 2009,
pp. 1773–1777.

[3] B. Hein, M. Hensel, H. Wörn, Intuitive and model-based on-line programming
of industrial robots: a modular on-line programming environment, in:
Proceedings of the 2008 IEEE International Conference on Robotics and
Automation, 2008, pp. 3952–3957.

[4] B. Hein, H.Wörn, Intuitive andmodel-based on-line programming of industrial
robots: new input devices, in: Proceedings of the 2009 IEEE International
Conference on Intelligent Robots and Systems, 2009, pp. 3064–3069.

[5] V.S. Bottazzi, J.F.C. Fonseca, Off-line robot programming framework, in: Pro-
ceedings of the Joint International Conference on Automatic and Autonomous
Systems and International Conference on Networking and Services, 2005,
pp. 71–76.

[6] S.Mitsi, K.D. Bouzakis, G.Mansour, D. Sagris, G.Maliaris, Off-line programming
of an industrial robot formanufacturing, The International Journal of Advanced
Manufacturing Technology 26 (3) (2004) 262–267.

[7] X.F. Zha, H. Du, Generation and simulation of robot trajectories in a virtual
CAD-based off-line programming environment, The International Journal of
Advanced Manufacturing Technology 17 (8) (2001) 610–624.

[8] Z. Pan, J. Polden, N. Larkin, S.V. Duin, J. Norrish, Recent progress on
programming methods for industrial robots, Robotics and Computer-
Integrated Manufacturing 28 (2) (2012) 87–94.

[9] E. Freund, D. Rokossa, J. RoBmann, Process-oriented approach to an efficient
off-line programming of industrial robots, in: Proceeding of the 24th Annual
Conference of the IEEE Industrial Electronics Society, 1998, pp. 208–213.

[10] L. Beyer, J. Wulfsberg, Practical robot calibration with ROSY, Robotica 22 (5)
(2004) 505–512.

[11] A. Nubiola, I.A. Bonev, Absolute calibration of an ABB IRB 1600 robot using
laser tracker, Robotics and Computer-Integrated Manufacturing 29 (1) (2013)
236–245.

[12] J. Muelaner, Z. Wang, P. Maropoulos, Concepts for and analysis of a
high accuracy and high capacity (HAHC) aerospace robot, Proceedings of
the Institution of Mechanical Engineers, Part B: Journal of Engineering
Manufacture 255 (8) (2011) 1393–1399.

[13] D.J. Kasik, W. Buxton, D.R. Ferguson, Ten CAD challenges, Computer Graphics
and Applications 25 (2) (2005) 81–92.

[14] B. Bhanu, CAD-based robot vision, IEEE Computer 20 (8) (1987) 12–16.
[15] C.I. Lin, T.F. Lu, CAD-based intelligent robot workcell, in: Proceedings of the

3rd International Conference on Computer Integrated Manufacturing, 1995,
pp. 437–444.

[16] P. Neto, N. Mendes, R. Araújo, J.N. Pires, A.P. Moreira, High-level robot
programming based on CAD: dealing with unpredictable environments,
Industrial Robot 39 (3) (2012) 294–303.

[17] M. Ferreira, A.P. Moreira, P. Neto, A low-cost laser scanning solution for
flexible robotic cells: spray coating, The International Journal of Advanced
Manufacturing Technology 58 (9) (2012) 1031–1041.

[18] P. Neto, J.N. Pires, A.P. Moreira, CAD-based off-line robot programming, in:
Proceedings of the 4th IEEE International Conference on Robotics, Automation
and Mechatronics, 2010, pp. 516–521.

[19] H. Chen, T. Fuhlbrigge, X. Li, A review of CAD-based robot path planning for
spray painting, Industrial Robot 36 (1) (2009) 45–50.

[20] W. Sheng, N. Xi, M. Song, Y. Chen, P. MacNeille, Automated CAD-guided robot
path planning for spray painting of compound surfaces, in: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2000, pp.
1918–1923.

P. Neto, N. Mendes / Robotics and Autonomous Systems () – 15

[21] M.A.S Arikan, T. Balkan, Process modeling, simulation, and paint thickness
measurement for robotic spray painting, Journal of Robotic Systems 17 (9)
(2000) 479–494.

[22] H. Chen, W. Sheng, N. Xi, M. Song, Y. Chen, CAD-based automated robot
trajectory planning for spray painting of free-form surfaces, Industrial Robot
29 (5) (2002) 426–433.

[23] J.Y. Kim, CAD-based automated robot programming in adhesive spray systems
for shoe outsoles and uppers, Journal of Robotic Systems 21 (11) (2004)
625–634.

[24] T. Schaefer, D. Schraft, Incremental sheet metal forming by industrial robot,
Rapid Prototyping Journal 11 (5) (2005) 278–286.

[25] T. Pulkkinen, T. Heikkilä, M. Sallinen, S. Kivikunnas, T. Salmi, 2D CAD
based robot programming for processing metal profiles in short series
manufacturing, in: International Conference on Control, Automation and
Systems, 2008, pp.156–162.

[26] F. Nagata, T. Hase, Z. Haga, M. Omoto, K. Watanabe, CAD/CAM-based
position/force controller for a mold polishing robot, Mechatronics 17 (4/5)
(2007) 207–216.

[27] F. Nagata, S. Yoshitake, A. Otsuka, K. Watanabe, M.K. Habib, Development of
CAM system based on industrial robotic servo controller without using robot
language, Robotics and Computer-Integrated Manufacturing 29 (2) (2013)
454–462.

[28] F. Nagata, S. Yoshitake, A. Otsuka, K. Watanabe, M.K. Habib, CAM system
without using robot language for an industrial robot RV1A, in: Proceedings
of the 2012 IEEE International Symposium on Industrial Electronics, 2012, pp.
1529–1534.

[29] E. Cerit, I. Lazoglu, A CAM-based path generation method for rapid prototyp-
ing applications, The International Journal of Advanced Manufacturing Tech-
nology 56 (1/4) (2011) 319–327.

[30] L. Feng-yun, L. Tian-sheng, Development of a robot system for complex
surfaces polishing based on CL data, The International Journal of Advanced
Manufacturing Technology 26 (2005) 1132–1137.

[31] Y.H. Chen, Y.N. Hu, Implementation of a robot system for sculptured surface
cutting – part 1 – rough machining, International Journal of Advanced
Manufacturing Technology 15 (9) (1999) 624–629.

[32] Y.N. Hu, Y.H. Chen, Implementation of a robot system for sculptured surface
cutting – part 2 – finish machining, International Journal of Advanced
Manufacturing Technology 15 (9) (1999) 630–639.

[33] K. Murphy, R. Norcross, F. Proctor, CAD directed robotic deburring, in:
2nd International Symposium on Robotics and Manufacturing Research,
Education, and Applications, 1988.

[34] M. Sallinen, M. Sirviö, Robotized system for prototype manufacturing of
castings and billets, in: E. Arai, T. Arai (Eds.), Mechatronics for Safety, Security
and Dependability in a New Era, Elsevier, Oxford, 2006, pp. 277–280.

[35] A. Murarka, B. Kuipers, Using CAD drawings for robot navigation, in: IEEE
Systems, Man and Cybernetics Conference, 2001, pp. 678–683.

[36] Q.H. Wang, J.R. Li, B.L. Wu, X.M. Zhang, Live parametric design modifications
in CAD-linked virtual environment, The International Journal of Advanced
Manufacturing Technology 50 (9) (2010) 859–869.

[37] T.K. Yoo,W.H. Lee, Blend shapewith quaternions, in: International Conference
on Convergence Information Technology, 2007, pp. 776–780.

[38] N. Pollard, J.K. Hodgins, M.J. Riley, C. Atkeson, Adapting human motion for the
control of a humanoid robot, in: IEEE International Conference on Robotics and
Automation, 2002, pp. 1390–1397.

[39] N. Mendes, P. Neto, J.N. Pires, A. Loureiro, Discretization and fitting of nominal
data for autonomous robots, Expert Systems with Applications 40 (4) (2013)
1143–1151.

[40] H.F. Wang, Y.L. Zhang, CAD/CAM integrated system in collaborative develop-
ment environment, Robotics and Computer-Integrated Manufacturing 18 (2)
(2002) 135–145.

[41] M. Liang, S. Ahamed, B. van den Berg, A STEP based tool path generation system
for rough machining of planar surfaces, Computers in Industry 32 (2) (1996)
219–231.

[42] X.W. Xu, Q. He, Striving for a total integration of CAD, CAPP, CAM and CNC,
Robotics and Computer-Integrated Manufacturing 20 (2) (2004) 101–109.

[43] X.W. Xu, Realization of STEP-NC enabled machining, Robotics and Computer-
Integrated Manufacturing 22 (2) (2006) 144–153.

[44] Z. Liu, W. Bu, J. Tan, Motion navigation for arc welding robots based on feature
mapping in a simulation environment, Robotics and Computer-Integrated
Manufacturing 26 (2) (2010) 137–144.

[45] E. Freund, B. Luedemann-Ravit, A system to automate the generation of
program variants for industrial robot applications, in: IEEE/RSJ International
Conference on Intelligent Robots and System, 2002, pp. 1856–1861.

[46] H. Chen, W. Sheng, Transformative CAD based industrial robot program
generation, Robotics and Computer-Integrated Manufacturing 27 (5) (2011)
942–948.

[47] E. Freund, B. Luedemann-Ravit, O. Stern, T. Koch, Creating the architecture of a
translator framework for robot programming languages, in: IEEE International
Conference on Robotics and Automation, 2001, pp. 187–192.

[48] Available: http://www2.dem.uc.pt/pedro.neto/Video_2012_1.wmv.
[49] Available: http://www2.dem.uc.pt/pedro.neto/Video_2012_2.wmv.

Pedro Netowas born in Coimbra, Portugal, on February 1,
1984. He received the Bachelor degree and Ph.D. degree
inMechanical Engineering from the University of Coimbra
in 2007 and 2012, respectively. He has been involved in
teaching activities since 2010 as Assistant Professor at the
Department of Mechanical Engineering of the University
of Coimbra. His research interests include: human–robot
interaction, pattern recognition, CAD-based robotics and
sensor fusion. Pedro Neto is author of several journal and
conference publications. He participated in two European
funded R&D projects, FP6 and FP7, and national projects.

NunoMendes is currently a Ph.D. student at theUniversity
of Coimbra. He received the Bachelor degree inMechanical
Engineering from the University of Coimbra in 2008. His
research interests include: CAD-based robotics, sensor
fusion, force control, Fuzzy and robotic friction stir
welding. Nuno Mendes is author of several journal and
conference publications.

http://www2.dem.uc.pt/pedro.neto/Video_2012_1.wmv
http://www2.dem.uc.pt/pedro.neto/Video_2012_2.wmv

	Direct off-line robot programming via a common CAD package
	Introduction
	Off-line robot programming
	CAD-based robot programming

	CAD-based approach
	CAD packages
	Extracting data from CAD drawings
	CAD models
	Process/path planning

	Mapping and calibration
	 X -- Y -- Z Euler angles
	Interpolation for end-effector orientations
	Generation of robot programs
	Software interface

	Experiments
	Experiment I
	Experiment II
	Results and discussion

	Conclusions and future work
	References

